分析 (1)n=1时,a1=S1=1;n>1时,an=Sn-Sn-1,可得an=2n-1(n∈N*);Tn=2bn-1,求得b1=1,再将n换为n-1,相减,运用等比数列的通项公式即可得到bn=2n-1;
(2)求得$\frac{1}{{a}_{n+1}+{S}_{n}}$=$\frac{1}{2n+1+{n}^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),运用数列的求和方法:裂项相消求和,以及不等式的性质,即可得证.
解答 解:(1)Sn=n2,可得n=1时,a1=S1=1;
n>1时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
综上可得an=2n-1(n∈N*);
Tn=2bn-1,可得n=1时,b1=T1=2b1-1,
解得b1=1,当n>1时,Tn-1=2bn-1-1,
可得bn=2bn-2bn-1,
即为bn=2bn-1,
即有bn=2n-1;
(2)证明:$\frac{1}{{a}_{n+1}+{S}_{n}}$=$\frac{1}{2n+1+{n}^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
即有$\frac{1}{{a}_{2}+{S}_{1}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{a}_{n+1}+{S}_{n}}$
<$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{4}$.
则原不等式成立.
点评 本题考查数列的通项公式的求法,注意运用数列的通项与求和的关系:n=1时,a1=S1=1;n>1时,an=Sn-Sn-1,同时考查数列的求和方法:裂项相消求和,以及不等式的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 十六进制 | 8 | 9 | A | B | C | D | E | F |
| 十进制 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| A. | E2 | B. | 4F | C. | 3D | D. | D2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-2,1] | C. | [-1,2] | D. | [ln2-2,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4af(a+1)}{a+1}$>2$\sqrt{a}$f(2$\sqrt{a}$)>(a+1)f($\frac{4a}{a+1}$) | B. | $\frac{4af(a+1)}{a+1}$<2$\sqrt{a}$f(2$\sqrt{a}$)<(a+1)f($\frac{4a}{a+1}$) | ||
| C. | 2$\sqrt{a}$f(2$\sqrt{a}$)>$\frac{4af(a+1)}{a+1}$>(a+1)f($\frac{4a}{a+1}$) | D. | 2$\sqrt{a}$f(2$\sqrt{a}$)<$\frac{4af(a+1)}{a+1}$<(a+1)f($\frac{4a}{a+1}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com