精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn=n2,数列{bn}的前n项和为Tn=2bn-1.
(1)求数列{an}与{bn}的通项公式;
(2)求证:$\frac{1}{{a}_{2}+{S}_{1}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{a}_{n+1}+{S}_{n}}$<$\frac{3}{4}$.

分析 (1)n=1时,a1=S1=1;n>1时,an=Sn-Sn-1,可得an=2n-1(n∈N*);Tn=2bn-1,求得b1=1,再将n换为n-1,相减,运用等比数列的通项公式即可得到bn=2n-1
(2)求得$\frac{1}{{a}_{n+1}+{S}_{n}}$=$\frac{1}{2n+1+{n}^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),运用数列的求和方法:裂项相消求和,以及不等式的性质,即可得证.

解答 解:(1)Sn=n2,可得n=1时,a1=S1=1;
n>1时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
综上可得an=2n-1(n∈N*);
Tn=2bn-1,可得n=1时,b1=T1=2b1-1,
解得b1=1,当n>1时,Tn-1=2bn-1-1,
可得bn=2bn-2bn-1
即为bn=2bn-1
即有bn=2n-1
(2)证明:$\frac{1}{{a}_{n+1}+{S}_{n}}$=$\frac{1}{2n+1+{n}^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
即有$\frac{1}{{a}_{2}+{S}_{1}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{a}_{n+1}+{S}_{n}}$
<$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{4}$.
则原不等式成立.

点评 本题考查数列的通项公式的求法,注意运用数列的通项与求和的关系:n=1时,a1=S1=1;n>1时,an=Sn-Sn-1,同时考查数列的求和方法:裂项相消求和,以及不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知随机变量ξ服从正态分布N(2,9),若P(ξ>3)=a,P(1<ξ≤3)=b,则$\frac{1}{a}$+$\frac{1}{b}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算机中常用的十六进制是逢16进1的计数制,采用数字0-9和字母A-F共16个计数符号,这些符号与十进制的数字的对应关系如下表:
十六进制01234567
十进制01234567
十六进制89ABCDEF
十进制89101112131415
例如,用十六进制表示A×B=6E,则E×F=(  )
A.E2B.4FC.3DD.D2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,A(-1,-1),B(3,-4),C(6,0),四边形ABCD为平行四边形.
(1)求$\overrightarrow{AB}$-$\overrightarrow{CB}$与$\overrightarrow{DC}$的夹角;
(2)若$\overrightarrow{AC}$⊥($\overrightarrow{AD}$+t$\overrightarrow{AB}$),求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两定点A(-2,0),B(1,0).曲线C上的任意一点P满足|PA|=2|PB|.
(I)求曲线C的方程:
(II)直线l过点D(4,6)且与曲线C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当b>a>0时,比较b,a,$\frac{a+b}{2}$,$\sqrt{ab}$,$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$,$\frac{2ab}{a+b}$的大小(运用基本不等式及比较法)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=alnx-ax2($\frac{1}{2}$≤x≤1)满足:斜率不小于1的任意直线l与f(x)的图象至多有一个公共点,则实数a的取值范围为(  )
A.[-1,1]B.[-2,1]C.[-1,2]D.[ln2-2,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于y轴对称,且当x<0时,f′(x)$>\frac{f(x)}{x}$恒成立,设a>1,则$\frac{4af(a+1)}{a+1}$,2$\sqrt{a}$f(2$\sqrt{a}$),(a+1)f($\frac{4a}{a+1}$)的大小关系为(  )
A.$\frac{4af(a+1)}{a+1}$>2$\sqrt{a}$f(2$\sqrt{a}$)>(a+1)f($\frac{4a}{a+1}$)B.$\frac{4af(a+1)}{a+1}$<2$\sqrt{a}$f(2$\sqrt{a}$)<(a+1)f($\frac{4a}{a+1}$)
C.2$\sqrt{a}$f(2$\sqrt{a}$)>$\frac{4af(a+1)}{a+1}$>(a+1)f($\frac{4a}{a+1}$)D.2$\sqrt{a}$f(2$\sqrt{a}$)<$\frac{4af(a+1)}{a+1}$<(a+1)f($\frac{4a}{a+1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知:等差数列{an}中,a3=5,a5=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={2^{a_n}}$,Sn是数列{bn}的前n项和,求Sn

查看答案和解析>>

同步练习册答案