精英家教网 > 高中数学 > 题目详情
函数的递增区间是
A.B.
C.D.
C
,故所求的递增区间为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(Ⅰ)当时,求函数的单调递增区间;
(Ⅱ)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知是函数的一个极值点.
(Ⅰ)求
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数 的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数+3的单调递增和递减区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设
(1)若函数在区间内单调递减,求的取值范围;
(2) 若函数处取得极小值是,求的值,并说明在区间内函数
的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

满足,则方程解的个数
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函数f(x)的单调区间;
(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0=  时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的解集为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案