精英家教网 > 高中数学 > 题目详情
6.对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x);x∈M}=M,则称函数f(x)具有性质p,给出下列3个函数:
①f(x)=sinx
②f(x)=x3-3x
③f(x)=lgx+3
其中具有性质p的函数是②(填入所有满足条件函数的序号)

分析 ①对于函数f(x)=sinx,根据其在[-$\frac{π}{2}$,$\frac{π}{2}$]上是单调增函数,通过分析方程sinx=x在[-$\frac{π}{2}$,$\frac{π}{2}$]上仅有一解,判断即可;
②通过对已知函数求导,分析出函数的单调区间,找到极大值点和极小值点,并求出极大值b和极小值a,而求得的f(a)与f(b)在[a,b]范围内,满足性质P;
③根据“性质P”的定义,函数存在“区间M”,只要举出一个符合定义的区间M即可,但要说明函数没有“区间P”,判断即可

解答 解:①对于函数f(x)=sinx,若正弦函数存在等值区间[a,b],
则在区间[a,b]上有sina=a,sinb=b,
由正弦函数的值域知道[a,b]⊆[-1,1],
但在区间]⊆[-1,1]上仅有sin0=0,
所以函数f(x)=sinx不具有性质P;
②对于函数f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).
当x∈(-1,1)时,f′(x)0.
所以函数f(x)=x3-3x的增区间是(-∞,-1),(1,+∞),减区间是(-1,1).
取M=[-2,2],此时f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2.
所以函数f(x)=x3-3x在M=[-2,2]上的值域也为[-2,2],
则具有性质P;
③对于 f(x)=lgx+3,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,
故有$\left\{\begin{array}{l}lga+3=a\\ lgb+3=b\end{array}\right.$,即方程lgx+3=x有两个解,这与y=lgx+3和y=x的图象相切相矛盾.
故③不具有性质P.
故答案为:②.

点评 本题是新定义题,考查了函数的定义域与值域的关系,体现了数学转化思想,此题中单调函数存在好区间的条件是f(x)=x,正确理解“性质P”的定义是解答该题的关键,是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某菜农有两段总长度为20米的篱笆PA及PB,现打算用它们和两面成直角的墙OM、ON围成一个如图所示的四边形菜园OAPB(假设OM、ON这两面墙都足够长).已知|PA|=|PB|=10(米),∠AOP=∠BOP=$\frac{π}{4}$,∠OAP=∠OBP.设∠OAP=θ,四边形OAPB的面积为S.
(1)将S表示为θ的函数,并写出自变量θ的取值范围;
(2)求出S的最大值,并指出此时所对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上一点与其左顶点、右焦点构成以右焦点为直角顶点的等腰三角形,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{2\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x2-alnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)当a>0时,若f(x)的最小值为1,求a的值;
(3)设g(x)=f(x)-2x,若g(x)有两个极值点x1,x2(x1<x2),证明:g(x1)+g(x2)>-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在(0,+∞)上的单调函数f(x)对任意的x∈(0,+∞)都有f(f(x)-log3x)=4,则不等式f(a2+2a)>4的解集为(  )
A.{a|a<-3或a>1}B.{a|a>1}C.{a|-3<x<1}D.{a|a<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面区域为三角形,且其面积等于$\frac{4}{3}$,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知M为△ABC所在平面内的一点,且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+n\overrightarrow{AC}$.若点M在△ABC的内部(不含边界),则实数n的取值范围是(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正三角形ABC边长为2,M、N分别为边AB、AC的中点,点P为线段MN上的动点,则$\overrightarrow{BP}•\overrightarrow{CP}$的取值范围是[$-\frac{1}{4}$,0];若$\overrightarrow{BP}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则(x+1)•y的最大值为$\frac{7}{16}$.

查看答案和解析>>

同步练习册答案