精英家教网 > 高中数学 > 题目详情
13.根据下面的要求,求满足1+2+3+…+n>2016的最小的自然数n.
(1)完成执行该问题的程序框图;
(2)如图是解决该问题对应的程序语句,请补充完整.

分析 (1)分析题目中的要求,发现这是一个累加型的问题,故可能用循环结构来实现,在编写算法的过程中要注意,累加的初始值为0,累加值每一次增加1,退出循环的条件是累加结果S>2016,把握住以上要点不难得到正确的算法和流程图.
(2)根据流程图即可得解程序.

解答 解:(1)程序框图如下:

(2)程序语句如下:
S=0
n=1
DO
  S=S+n
  n=n+1
LOOP UNTIL  S>2016
PRINT n-1
END
(左边框图每格(2分),右边每行1分)

点评 本题主要考查了循环结构,以及利用循环语句来实现数值的累加(乘),同时考查了流程图的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.计算下列各式的值:
(Ⅰ)($\frac{1}{9}$)${\;}^{\frac{1}{2}}}$+(-2)0-($\frac{27}{64}$)${\;}^{-\frac{1}{3}}}$+0.125${\;}^{-\frac{1}{3}}}$;
(Ⅱ)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64-($\frac{1}{3}$)${\;}^{{{log}_3}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\left\{\begin{array}{l}{e^x}-1,({x≤0})\\ 2x-6-lnx,({x>0})\end{array}$的零点个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若样本x1+1,x2+1,xn+1的平均数为9,方差为3,则样本2x1+3,2x2+3,…,2xn+3,的平均数、方差是(  )
A.23,12B.19,12C.23,18D.19,18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解甲、乙两校高二年级学生某次期末联考物理成绩情况,从这两学校中分别随机抽取30名高二年级的物理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若乙校高二年级每位学生被抽取的概率为0.15,求乙校高二年级学生总人数;
(2)根据茎叶图,对甲、乙两校高二年级学生的物理成绩进行比较,写出两个统计结论(不要求计算);
(3)从样本中甲、乙两校高二年级学生物理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=(sinx+cosx)2-2sin2x-m在[0,$\frac{π}{2}$]上有两个零点,则实数m的取值范围是[1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,阴影部分表示的集合是(  )
A.(A∪B)∪(B∪C)B.B∩[∁U(A∪C)]C.(A∪C)∩(∁UB)D.[∁U(A∩C)]∪B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若函数f(x)=ex+x2-mx,在点(1,f(1))处的斜率为e+1.
(1)求实数m的值;
(2)求函数f(x)在区间[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三棱柱ABC-A1B1C1中,P、Q分别为侧棱AA1,BB1上的点,且A1P=BQ,则四棱锥C1-APQB与三棱柱ABC-A1B1C1的体积之比是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案