分析 (Ⅰ)(2b-c)cosA=acosC,由正弦定理得:(2sinB-sinC)cosA=sinAcosC,再利用和差公式、三角形内角和定理、诱导公式可得cosA=$\frac{1}{2}$,A∈(0,π).解得A.
(2)由余弦定理得a2=b2+c2-2bccosA,把$a=\sqrt{13}$,b+c=5,代入可得bc,可得三角形ABC的面积S=$\frac{1}{2}bc$sinA.
解答 解:(Ⅰ)在三角形ABC中,∵(2b-c)cosA=acosC,
由正弦定理得:(2sinB-sinC)cosA=sinAcosC,
化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,
sinB≠0,解得cosA=$\frac{1}{2}$.A∈(0,π).
∴A=$\frac{π}{3}$.
(2)由余弦定理得a2=b2+c2-2bccosA,
∵$a=\sqrt{13}$,b+c=5,
∴13=(b+c)2-3cb=52-3bc,
化为bc=4,
所以三角形ABC的面积S=$\frac{1}{2}bc$sinA=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题考查了正弦定理余弦定理、和差公式、三角形内角和定理、诱导公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a∥b,b?α,则a∥α | B. | a?α,b?β,α∥β,则a∥b | ||
| C. | a?α,b?α,α∥β,b∥β,则α∥β | D. | α∥β,a?α,则a∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | 6 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com