【题目】如图,几何体EF-ABCD中,四边形CDEF是正方形,四边形ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB是腰长为2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求证:BC⊥AF;
(2)求几何体EF-ABCD的体积.
【答案】(1)详见解析;(2).
【解析】
(1)推导出FC⊥CD,FC⊥BC,AC⊥BC,由此BC⊥平面ACF,从而BC⊥AF.
(2)推导出AC=BC=2,AB4,从而AD=BCsin∠ABC=22,由V几何体EF﹣ABCD=V几何体A﹣CDEF+V几何体F﹣ACB,能求出几何体EF﹣ABCD的体积.
(1)因为平面CDEF⊥平面ABCD,
平面CDEF∩平面ABCD=CD,
又四边形CDEF是正方形,
所以FC⊥CD,FC平面CDEF,
所以FC⊥平面ABCD,所以FC⊥BC.
因为△ACB是腰长为2的等腰直角三角形,
所以AC⊥BC.
又AC∩CF=C,所以BC⊥平面ACF.
所以BC⊥AF.
(2)因为△ABC是腰长为2的等腰直角三角形,
所以AC=BC=2,AB==4,
所以AD=BCsin∠ABC=2=2,
CD=AB=BCcos∠ABC=4-2cos45°=2,
∴DE=EF=CF=2,
由勾股定理得AE==2,
因为DE⊥平面ABCD,所以DE⊥AD.
又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF.
所以V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB
=
=+
=
=.
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x)=f(2-x),当x∈[0,1]时f(x)=x2,则函数g(x)=|sin(πx)|-f(x)在区间[-1,3]上的所有零点的和为( )
A. 6 B. 7 C. 8 D. 10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)有“漂移点”.
(1)用零点存在定理证明:函数f(x)=x2+2x在[0,1]上有“漂移点”;
(2)若函数g(x)=lg()在(0,+∞)上有“漂移点”,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.
(1)求直线l的方程.
(2)若点P(a,1)到直线l的距离为,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)若f(2)=a,求a的值;
(2)当a=2时,若对任意互不相等的实数x1,x2∈(m,m+4),都有>0成立,求实数m的取值范围;
(3)判断函数g(x)=f(x)-x-2a(<a<0)在R上的零点的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线x2﹣ =1(b>0)的左、右焦点分别为F1 , F2 , 直线l过F2且与双曲线交于A,B两点.
(1)直线l的倾斜角为 ,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b= ,若l的斜率存在,且( ) =0,求l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知曲线C1:(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρcos =-,曲线C3:ρ=2sin θ.
(1)求曲线C1与C2的交点M的直角坐标;
(2)设点A,B分别为曲线C2,C3上的动点,求|AB|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com