精英家教网 > 高中数学 > 题目详情
12.已知f(x)=tan(2x+$\frac{π}{4}$),则使f(x)≥$\sqrt{3}$成立的x的集合是(  )
A.[$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈ZB.(-$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{π}{24}$+$\frac{1}{2}$kπ),k∈Z
C.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ),k∈ZD.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ],k∈Z

分析 根据正切函数的图象与性质,结合题意,即可求出不等式的解集.

解答 解:∵f(x)=tan(2x+$\frac{π}{4}$),
∴f(x)≥$\sqrt{3}$化为tan(2x+$\frac{π}{4}$)≥$\sqrt{3}$,
即$\frac{π}{3}$+kπ≤2x+$\frac{π}{4}$<$\frac{π}{2}$+kπ,k∈Z;
解得$\frac{π}{24}$+$\frac{1}{2}$kπ≤x<$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z;
故使f(x)≥$\sqrt{3}$成立的x的集合是[$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈Z,
故选:A.

点评 本题考查了正切函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知x>0,观察下列式子:$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,x+\frac{27}{x^3}≥4,x+\frac{256}{x^4}≥5,…$类比有$x+\frac{a}{{{x^{2016}}}}≥2017$,a=20162016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$,其中a∈R
(1)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x=$\frac{π}{12}$是函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移$\frac{3π}{4}$个单位后得到函数g(x)的图象,则函数g(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值为(  )
A.-2B.-1C.-$\sqrt{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.给出命题p:方程$\frac{x^2}{a}+\frac{y^2}{2-a}=1$表示焦点在y轴上的椭圆;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.
(1)如果命题p为真,求a的取值范围;
(2)如果命题“p∪q”为真,“p∩q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)求这n名同学成绩的平均数、中位数及众数;
(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集I是实数集R,M={x|x≥3}与N={x|(x-3)(x-1)≤0}都是I的子集(如图所示),则阴影部分所表示的集合为(  )
A.{x|1<x<3}B.{x|1≤x<3}C.{x|1<x≤3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(Ⅰ)求抛物线方程及其焦点坐标;
(Ⅱ)求证:OM与ON相互垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.各项均为正数的等比数列{an}的前n项和为Sn,满足${S_{n+2}}=4{S_n}+6,n∈{N^*}$.
(1)求a1及通项公式an
(2)若${b_n}=\frac{n}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案