精英家教网 > 高中数学 > 题目详情
7.给出命题p:方程$\frac{x^2}{a}+\frac{y^2}{2-a}=1$表示焦点在y轴上的椭圆;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.
(1)如果命题p为真,求a的取值范围;
(2)如果命题“p∪q”为真,“p∩q”为假,求实数a的取值范围.

分析 (1)若命题p为真,则2-a>a>0,解得:a的取值范围;
(2)如果命题“p∪q”为真,“p∩q”为假,则p,q中一真一假,进而可得实数a的取值范围.

解答 解:(1)命题p为真?2-a>a>0?0<a<1…(4分)
(2)命题q为真$?△={(2a-3)^2}-4>0?a<\frac{1}{2}或a>\frac{5}{2}$
命题“p∨q”为真,“p∧q”为假?p,q中一真一假,…(6分)
当p真q假时,$\left\{{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}}\right.$,得$\frac{1}{2}≤a<1$…(8分)
当p假q真时,$\left\{{\begin{array}{l}{a≤0或a≥1}\\{a<\frac{1}{2}或a>\frac{5}{2}}\end{array}}\right.$,得$a≤0或a>\frac{5}{2}$
所以a的取值范围是$\frac{1}{2}≤a<1$或$a≤0或a>\frac{5}{2}$…(10分)

点评 本题以命题的真假判断与应用为载体,考查了椭圆的标准方程,二次函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.f(x)=Asin(ωx+ωπ)(A>0,ω>0)在$[{-\frac{3π}{2},-\frac{3π}{4}}]$上单调,则ω的最大值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,点O是正方形ABCD的中心,SO⊥平面ABCD,且SO=OD,点P为棱SD上一点.
(Ⅰ) 当点P为棱SD的中点时,求证:SD⊥平面PAC;
(Ⅱ)是否存在点P,使得直线BC与平面PAC所成角的正弦值为$\frac{\sqrt{10}}{10}$?若存在,请确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:点(1,1)在圆x2+y2-2mx+2my+2m2-4=0的内部;命题q:直线mx-y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sina=-$\frac{\sqrt{3}}{2}$,a∈[-2π,0],则a=$-\frac{π}{3}$和$-\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=tan(2x+$\frac{π}{4}$),则使f(x)≥$\sqrt{3}$成立的x的集合是(  )
A.[$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈ZB.(-$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{π}{24}$+$\frac{1}{2}$kπ),k∈Z
C.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ),k∈ZD.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示是y=Asin(ωx+φ)(A>0,ω>0)的图象的一段,它的一个解析式为(  ) 
A.y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$)B.y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$)C.y=$\frac{2}{3}$sin(x-$\frac{π}{3}$)D.y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出以下命题:
①若方程x2+2x+m=0有实根,则m≤2;
②若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线斜率为2,则其离心率为$\sqrt{5}$;
③在锐角△ABC中,一定sinA>cosB成立;
④秦九韶算法的特点在于把求一个n次多项式的值转化为求n个一次多项式的值;
⑤随机模拟方法的奠基人是蒙特卡罗.
其中正确的命题序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了得到函数y=sin2x+cos2x的图象,可以将函数y=cos2x-sin2x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{2}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

同步练习册答案