精英家教网 > 高中数学 > 题目详情
14.如图,直三棱柱ABC-A1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点.
求证:(1)C1P∥平面MNC;
          (2)平面MNC⊥平面ABB1A1

分析 (1)连接MP,只需证明四边形MPC1N是平行四边形,即可得MN∥C1P∵C1P,即可证得C1P∥平面MNC;
(2)只需证明CM⊥平面MNC,即可得平面MNC⊥平面ABB1A1

解答 证明:(1)连接MP,因为M、P分别为AB,BC的中点
∵MP∥AC,MP=$\frac{1}{2}AC$,
又因为在直三棱柱ABC-A1B1C1中,∴AC∥A1C1,AC=A1C1
且N是A1C1的中点,∴MP∥C1N,MP=C1N
∴四边形MPC1N是平行四边形,∴C1P∥MN
∵C1P?面MNC,MN?面MNC,∴C1P∥平面MNC;
(2)在△ABC中,CA=CB,M为AB的中点,∴CM⊥AB.
在直三棱柱ABC-A1B1C1中,B1B⊥面ABC.
∵CM?面ABC,∴BB1⊥CM
由因为BB1∩AB=B,BB1,AB?平面面ABB1A1
又CM?平面MNC,
∴平面MNC⊥平面ABB1A1

点评 本题考查了线面平行、面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解关于x,y的方程组$\left\{\begin{array}{l}{mx+2y=m+4}\\{2x+my=m}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.角α终边上一点P(2sin5,-2cos5),α∈(0,2π),则α=(  )
A.5-$\frac{π}{2}$B.3π-5C.5D.5+$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.
(Ⅰ)若函数f(x)=sinmx,x∈R,m∈(3,4)与函数g(x)=lgx的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.
(Ⅱ)对于(Ⅰ)中的m值,函数f(x)=sinmx,$x∈({0,\frac{5}{7}}]$时,不等式logax>sinmx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=x+$\frac{9}{x+2}$,x∈(-2,+∞),则该函数的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知x∈[-3,2],求f(x)=$\frac{1}{{4}^{x}}$-$\frac{1}{{2}^{x}}$+1的最小值与最大值.
(2)已知函数f(x)=a${\;}^{{x}^{2}-3x+3}$在[0,2]上有最大值8,求正数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,O为坐标原点,已知A(-2,0),B(0,-2),C(cosφ,sinφ),其中0<φ<π.
(Ⅰ)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,求sin2φ的值;
(Ⅱ)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0,函数$f(x)=asin2x-\sqrt{3}cos2x+1$的最大值为3.
(1)求f(x)的单调递减区间;
(2)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.各项为正的等比数列{an}中,a4a14=8,则log2a7+log2a11的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案