精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系中,O为坐标原点,已知A(-2,0),B(0,-2),C(cosφ,sinφ),其中0<φ<π.
(Ⅰ)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,求sin2φ的值;
(Ⅱ)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角θ.

分析 (I)$\overrightarrow{AC}$=(cosφ+2,sinφ),$\overrightarrow{BC}$=(cosφ,sinφ+2),利用$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,可得cosφ+sinφ=$\frac{1}{3}$,两边平方即可得出.
(II)由|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,可得$\sqrt{(cosφ-2)^{2}+si{n}^{2}φ}$=$\sqrt{3}$,化为:cosφ=$\frac{1}{2}$,0<φ<π.解答φ.利用cosθ=$\frac{\overrightarrow{OB}•\overrightarrow{OC}}{|\overrightarrow{OB}||\overrightarrow{OC}|}$,即可得出.

解答 解:(I)$\overrightarrow{AC}$=(cosφ+2,sinφ),$\overrightarrow{BC}$=(cosφ,sinφ+2),$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,
∴cosφ(cosφ+2)+sinφ(sinφ+2)=$\frac{5}{3}$,
∴cosφ+sinφ=$\frac{1}{3}$,
两边平方可得:sin2φ=-$\frac{8}{9}$.
(II)∵|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,∴$\sqrt{(cosφ-2)^{2}+si{n}^{2}φ}$=$\sqrt{3}$,化为:cosφ=$\frac{1}{2}$,∵0<φ<π.
∴φ=$\frac{π}{3}$.
∴C$(\frac{1}{2},\frac{\sqrt{3}}{2})$.
∴cosθ=$\frac{\overrightarrow{OB}•\overrightarrow{OC}}{|\overrightarrow{OB}||\overrightarrow{OC}|}$=$\frac{-\sqrt{3}}{2×1}$=-$\frac{\sqrt{3}}{2}$,
∴θ=$\frac{5π}{6}$.
即$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角为$\frac{5π}{6}$.

点评 本题考查了数量积运算性质、向量夹角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.某市A,B,C,D,E,F六个城区欲架设光缆,如图所示,两点之间的线段及线段上的相应数字分别对应城区可以架设光缆及所需光缆的长度,如果任意两个城市之间均匀光缆相通,则所需光缆的总长度的最小值是(  )
A.10B.12C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.据统计,2016年“双11”天猫总成交金额突破3万亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性和男性消费情况如表
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
女性人数5101547x
男性人数2310y2
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
女性男性总计
网购达人
非网购达人
总计
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右边2×2列联表,并回答能否有99%以上的把握认为“是否为‘网购达人’与性别有关?”
P(Χ2>k00.100.050.0100.005
k02.7063.8416.6357.879
附:(${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直三棱柱ABC-A1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点.
求证:(1)C1P∥平面MNC;
          (2)平面MNC⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}中,a1=$\frac{1}{2}$,前n项和Sn=n2an,求an=(  )
A.$\frac{1}{n(n-1)}$B.$\frac{1}{n(n+1)}$C.$\frac{2}{{{{(n+1)}^2}}}$D.$\frac{3}{(n+1)(n+2)}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,又$\overrightarrow{c}$=m$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=2$\overrightarrow{a}$-m$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,则实数m的值为-1或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设正项等比数列{an}的前n项和为Sn,且满足S3=3a3+2a2,a4=8.
(1)求数列{an}的通项公式;
(2)设数列bn=log2an,数列{bn}的前n项和为Tn,求使得Tn取最大值的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)<f'(x),且f(0)=2,则不等式f(x)>2ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列各式的值
(1)$\frac{tan(-150°)•cos(-570°)•cos(-1140°)}{tan(-210°)•sin(-690°)}$
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

同步练习册答案