精英家教网 > 高中数学 > 题目详情
15.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)<f'(x),且f(0)=2,则不等式f(x)>2ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

分析 根据条件构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,求函数的导数,利用函数的单调性即可得到结论.

解答 解:设g(x)=$\frac{f(x)}{{e}^{x}}$,
则g'(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f(x)<f′(x),
∴g'(x)>0,即函数g(x)单调递增.
∵f(0)=2,
∴g(0)=f(0)=2,
则不等式等价于g(x)>g(0),
∵函数g(x)单调递增.
∴x>0,
∴不等式的解集为(0,+∞),
故选:C.

点评 本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.角α终边上一点P(2sin5,-2cos5),α∈(0,2π),则α=(  )
A.5-$\frac{π}{2}$B.3π-5C.5D.5+$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,O为坐标原点,已知A(-2,0),B(0,-2),C(cosφ,sinφ),其中0<φ<π.
(Ⅰ)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,求sin2φ的值;
(Ⅱ)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0,函数$f(x)=asin2x-\sqrt{3}cos2x+1$的最大值为3.
(1)求f(x)的单调递减区间;
(2)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.( I)设复数z和它的共轭复数$\overline z$满足$4z+2\overline z=3\sqrt{3}+i$,求复数z.
(Ⅱ)设复数z满足|z+2|+|z-2|=8,求复数z对应的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某公司有4家直营店a,b,c,d,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.
abcd
00000
14224
26455
37766
48888
59988
6101088
根据此表,该公司获得最大总利润的运送方式有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l过点P(1,1),倾斜角为α,曲线C:$\left\{\begin{array}{l}x=2cosβ\\ y=\sqrt{2}sinβ\end{array}\right.$(β为参数).
(1)求直线l的参数方程和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点(从左往右),且AP=3PB,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.各项为正的等比数列{an}中,a4a14=8,则log2a7+log2a11的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了了解某校高三400名学生的数学学业水平测试成绩,制成样本频率分布直方图如图,分数不低于a即为优秀,如果优秀的人数为82人,则a的估计值是(  )
A.130B.140C.133D.137

查看答案和解析>>

同步练习册答案