精英家教网 > 高中数学 > 题目详情
7.已知直线l过点P(1,1),倾斜角为α,曲线C:$\left\{\begin{array}{l}x=2cosβ\\ y=\sqrt{2}sinβ\end{array}\right.$(β为参数).
(1)求直线l的参数方程和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点(从左往右),且AP=3PB,求直线l的斜率.

分析 (1)根据根据直线参数方程的几何意义得出直线l的参数方程,消去参数得出曲线C的普通方程;
(2)联立方程组,得出A,B对应的参数的关系,根据AP=3PB列方程求出tanα即可.

解答 解:(1)直线l的参数方程为:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t为参数);
曲线C的普通方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(2)把$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$代入$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1得:(cos2α+2sin2α)t2+2(cosα+2sinα)t-1=0,
设A,B对于的参数分别为t1,t2,则t1=-3t2
∴t1+t2=$\frac{-2(cosα+2sinα)}{1+si{n}^{2}α}$=-2t2,t1t2=$\frac{-1}{1+si{n}^{2}α}$=-3t22
∴3($\frac{cosα+2sinα}{1+si{n}^{2}α}$)2=$\frac{1}{1+si{n}^{2}α}$,
化简得:5sin2α+6sinαcosα+cos2α=0,解得tanα=-1或tanα=-$\frac{1}{5}$.
∴直线l的斜率为-$\frac{1}{5}$或-1.

点评 本题考查了参数方程的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.据统计,2016年“双11”天猫总成交金额突破3万亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性和男性消费情况如表
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
女性人数5101547x
男性人数2310y2
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
女性男性总计
网购达人
非网购达人
总计
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右边2×2列联表,并回答能否有99%以上的把握认为“是否为‘网购达人’与性别有关?”
P(Χ2>k00.100.050.0100.005
k02.7063.8416.6357.879
附:(${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设正项等比数列{an}的前n项和为Sn,且满足S3=3a3+2a2,a4=8.
(1)求数列{an}的通项公式;
(2)设数列bn=log2an,数列{bn}的前n项和为Tn,求使得Tn取最大值的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)<f'(x),且f(0)=2,则不等式f(x)>2ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移y(单位:cm)随时间t(单位:s)的变化曲线如图所示,则小球在开始振动(即t=0)时离开平衡位置的位移是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式a2+10b2+c2≥tb(a+3c)对一切正实数a,b,c恒成立,则实数t的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,a=3,c=2,cosB=$\frac{1}{3}$,求b边长,及sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列各式的值
(1)$\frac{tan(-150°)•cos(-570°)•cos(-1140°)}{tan(-210°)•sin(-690°)}$
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={y|y=cosx,x∈R},B={y|y=2x,x∈A},则A∩B=(  )
A.$[{\frac{1}{2},1}]$B.[1,2]C.$[{0,\frac{1}{2}}]$D.[0,1]

查看答案和解析>>

同步练习册答案