精英家教网 > 高中数学 > 题目详情
16.求下列各式的值
(1)$\frac{tan(-150°)•cos(-570°)•cos(-1140°)}{tan(-210°)•sin(-690°)}$
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

分析 (1)利用诱导公式以及特殊角的三角函数化简求值即可.
(2)利用诱导公式以及特殊角的三角函数化简求值即可.

解答 解:(1)$\frac{tan(-150°)•cos(-570°)•cos(-1140°)}{tan(-210°)•sin(-690°)}$=$\frac{-tan30°cos30°cos60°}{-tan30°sin30°}$=$\frac{\sqrt{3}}{2}$
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$=sin$\frac{π}{6}$+cos$\frac{π}{3}$-tan$\frac{π}{4}$=0.

点评 本题考查诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,O为坐标原点,已知A(-2,0),B(0,-2),C(cosφ,sinφ),其中0<φ<π.
(Ⅰ)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,求sin2φ的值;
(Ⅱ)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,求$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l过点P(1,1),倾斜角为α,曲线C:$\left\{\begin{array}{l}x=2cosβ\\ y=\sqrt{2}sinβ\end{array}\right.$(β为参数).
(1)求直线l的参数方程和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点(从左往右),且AP=3PB,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.各项为正的等比数列{an}中,a4a14=8,则log2a7+log2a11的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设全集U=R,A={x|$\frac{1}{4}$≤2x<8},B={x|y=$\sqrt{2-x}$}.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x2-2(a+3)+a(a+6)<0},∁UA∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数$z=\frac{1}{1+i}$的模长为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=x3+ax2+bx的图象与x轴相切于点(c,0),且f(x)有极大值4,则c=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了了解某校高三400名学生的数学学业水平测试成绩,制成样本频率分布直方图如图,分数不低于a即为优秀,如果优秀的人数为82人,则a的估计值是(  )
A.130B.140C.133D.137

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为(  )
成绩分析表
 
平均成绩$\overline{x}$96968585
标准差s4242
A.B.C.D.

查看答案和解析>>

同步练习册答案