分析 根据不等式对一切正实数恒成立,得出t≤$\frac{{a}^{2}+1{0b}^{2}{+c}^{2}}{b(a+3c)}$,求出h=$\frac{{a}^{2}+1{0b}^{2}{+c}^{2}}{b(a+3c)}$的最小值即可.
解答 解:不等式a2+10b2+c2≥tb(a+3c)对一切正实数a,b,c恒成立,
∴t≤$\frac{{a}^{2}+1{0b}^{2}{+c}^{2}}{b(a+3c)}$;
设h=$\frac{{a}^{2}+1{0b}^{2}{+c}^{2}}{b(a+3c)}$,a、b、c是正实数,
则h=$\frac{{(a}^{2}{+b}^{2})+({9b}^{2}{+c}^{2})}{ab+3bc}$≥$\frac{2ab+2•3bc}{ab+3bc}$=2,
∴t≤2;
∴实数t的取值范围是(-∞,2].
故答案为:(-∞,2].
点评 本题考查了不等式的解法与应用问题,也考查了基本不等式的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| a | b | c | d | |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4 | 2 | 2 | 4 |
| 2 | 6 | 4 | 5 | 5 |
| 3 | 7 | 7 | 6 | 6 |
| 4 | 8 | 8 | 8 | 8 |
| 5 | 9 | 9 | 8 | 8 |
| 6 | 10 | 10 | 8 | 8 |
| A. | 1种 | B. | 2种 | C. | 3种 | D. | 4种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com