| A. | $\frac{1}{n(n-1)}$ | B. | $\frac{1}{n(n+1)}$ | C. | $\frac{2}{{{{(n+1)}^2}}}$ | D. | $\frac{3}{(n+1)(n+2)}$ |
分析 由an=Sn-Sn-1可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,使用累乘法即可得出an.
解答 解:∵Sn=n2an,∴Sn-1=(n-1)2an-1,(n≥2)
两式相减得:an=n2an-(n-1)2an-1,
∴(n2-1)an=(n-1)2an-1,即(n+1)an=(n-1)an-1,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{n}}{{a}_{1}}$=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n-1}{n+1}$•$\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…$\frac{1}{3}$=$\frac{2}{n(n+1)}$,
∴an=$\frac{2}{n(n+1)}$a1=$\frac{1}{n(n+1)}$.
当n=1时,上式也成立.
故an=$\frac{1}{n(n+1)}$.
故选:B.
点评 本题考查了数列的通项公式的求法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1]∪[$-\frac{1}{2}$,+∞) | B. | (0,1) | C. | (-1,$-\frac{1}{2}$,)∪($-\frac{1}{2}$,+∞) | D. | (-2,$-\frac{1}{2}$)∪($-\frac{1}{2}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com