精英家教网 > 高中数学 > 题目详情
9.若函数y=x+$\frac{9}{x+2}$,x∈(-2,+∞),则该函数的最小值为4.

分析 变形利用基本不等式即可得出.

解答 解:∵x∈(-2,+∞),
∴x+2>0
∴y=x+$\frac{9}{x+2}$=x+2+$\frac{9}{x+2}$-2≥2$\sqrt{(x+2)•\frac{9}{x+2}}$-2=6-2=4,当且仅当x=1时取等号,
故该函数的最小值为4,
故答案为:4

点评 本题考查了基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,则输出s的值为(  )
A.$\sqrt{2018}-1$B.$\sqrt{2017}-1$C.$\sqrt{2016}-1$D.$\sqrt{2015}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设(1+i)(x+yi)=2,其中x,y实数,则|x+2yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.据统计,2016年“双11”天猫总成交金额突破3万亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性和男性消费情况如表
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
女性人数5101547x
男性人数2310y2
(Ⅰ)计算x,y的值;在抽出的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
女性男性总计
网购达人
非网购达人
总计
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右边2×2列联表,并回答能否有99%以上的把握认为“是否为‘网购达人’与性别有关?”
P(Χ2>k00.100.050.0100.005
k02.7063.8416.6357.879
附:(${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线y=2x2+1过点(1,3),则该曲线在该点处的切线方程为(  )
A.y=-4x-1B.y=4x-1C.y=4x-11D.y=-4x+7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直三棱柱ABC-A1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点.
求证:(1)C1P∥平面MNC;
          (2)平面MNC⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}中,a1=$\frac{1}{2}$,前n项和Sn=n2an,求an=(  )
A.$\frac{1}{n(n-1)}$B.$\frac{1}{n(n+1)}$C.$\frac{2}{{{{(n+1)}^2}}}$D.$\frac{3}{(n+1)(n+2)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设正项等比数列{an}的前n项和为Sn,且满足S3=3a3+2a2,a4=8.
(1)求数列{an}的通项公式;
(2)设数列bn=log2an,数列{bn}的前n项和为Tn,求使得Tn取最大值的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,a=3,c=2,cosB=$\frac{1}{3}$,求b边长,及sinC的值.

查看答案和解析>>

同步练习册答案