精英家教网 > 高中数学 > 题目详情
3.求两圆C1:x2+y2=16,C2:(x-4)2+y2=4外公切线方程.

分析 设出两圆的外公切线与x轴的交点坐标,由三角形相似求得交点坐标,设出切线方程,由原点到切线的距离等于半径求得切线斜率,则答案可求.

解答 解:设两圆的公切线交x轴于(t,0),
则$\frac{t-4}{t}=\frac{2}{4}$,解得:t=8,
设两圆的公切线方程为y=k(x-8),即kx-y-8k=0.
由$\frac{|-4k|}{\sqrt{{k}^{2}+1}}$=2,解得:k=±$\frac{\sqrt{3}}{3}$.
∴两圆C1:x2+y2=16,C2:(x-4)2+y2=4的外公切线方程是y=±$\frac{\sqrt{3}}{3}$(x-8).

点评 本题考查了两圆的外公切线方程,考查了点到直线的距离,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.作出下列函数的图象.
(1)y=1-x(x∈z);
(2)y=x2一4x+3,x∈[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=-x2-x,g(x)=x2-5x+5,则f(g(x))的值域为(  )
A.(-∞,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$]C.[-$\frac{1}{4}$,$\frac{1}{4}$]D.($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是等差数列,bn=${a}_{n+1}^{2}$-${a}_{n}^{2}$(n∈N+).
(1)求证:数列{bn}是等差数列;
(2)若数列{an}的公差为8,b1=16,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设Sn为等差数列{an}的前n项和,已知{an}的公差为d,且a1=$\frac{3}{2}$d>0,证明:存在正常数c,使$\sqrt{{S}_{n}+c}+\sqrt{{S}_{n+2}+c}=2\sqrt{{S}_{n+1}+c}$对任意自然数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若二次函数y=f(x)(x∈R)的最大值为5,且f(3)=f(-1)=1.
(1)求函数y=f(x)的解析式;
(2)若关于x的方程x2-mf′(x)+4m+1=0(f′(x)为函数y=f(x)的导数)其中一根在(-∞,0)内,另一根在(1,2)内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设p、q是实数,则表达式u=(p+q)2+($\sqrt{2-{p}^{2}}$-$\frac{9}{q}$)2的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)定义域为{1<x<2},则函数f(x2+1)的定义域为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的定义域:
(1)y=(x2-2x)0+$\sqrt{3+\frac{4}{x}}$
(2)g(x)=$\frac{\sqrt{{x}^{2}-1}}{\sqrt{x+2}}$.

查看答案和解析>>

同步练习册答案