精英家教网 > 高中数学 > 题目详情
15.函数f(x)=$\sqrt{-{x^2}+2x+3}$+lg(x2-1)的定义域是(1,3].

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{-x^2+2x+3≥0}\\{x^2-1>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x^2-2x-3≤0}\\{x>1或x<-1}\end{array}\right.$,
则$\left\{\begin{array}{l}{-1≤x≤3}\\{x>1或x<-1}\end{array}\right.$,
解得1<x≤3,
故定义域为(1,3],
故答案为:(1,3]

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.正四面体ABCD中,M,N分别是棱BC和棱AC的中点,则异面直线AM和DN所成的角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的焦点为F,点F是双曲线:$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{7}$=1的一个焦点;
(1)求抛物线C的方程;
(2)过点F任作直线l与曲线C交于A,B两点.
①求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;②由点A,B分别向(x-2)2+y2=1各引一条切线切点分别为P、Q,记α=∠AFP,β=∠BFQ,求cosα+cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的体积为(  )
A.B.πC.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.七位裁判各自对一名跳水运动员打分后,去掉一个最高分,再去掉一个最低分,关于剩余分数的说法一定正确的是(  )
A.众数不变B.方差不变C.平均值不变D.中位数不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三棱柱ABC-A1B1C1中,△ABC为正三角形,AA1⊥底面ABC,E是AB的中点,F是BC1的中点.下列命题正确的是①②③⑤(写出所有正确命题的编号).
①EF∥平面ACC1A1
②平面CEF⊥平面 ABB1A1
③平面CEF截该三棱柱所得大小两部分的体积比为11:1;
④若该三棱柱有内切球,则AB=$\sqrt{3}$BB1
⑤若BB1上有唯一点G,使得A1G⊥CG,则BB1=$\sqrt{2}$AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(-2,0),B(0,-2),C(2sinθ,cosθ).
(Ⅰ)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求tanθ和$\frac{3sinθ-4cosθ}{4cosθ+3sinθ}$的值;
(Ⅱ)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆柱形容器盛有为8cm的水,现放入三个相同的玻璃小球(小球的半径与圆柱的底面半径相等),若水刚好淹没最上方的小球,如图所示,则小球的半径为4.

查看答案和解析>>

同步练习册答案