精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

【答案】(1);(2)见解析

【解析】

(1)由面积最大值可得,又,以及,解得,即可得到椭圆的方程,(2)假设轴上存在点是以为直角顶点的等腰直角三角形,设,线段的中点为,根据韦达定理求出点的坐标,再根据,即可求出的值,可得点的坐标.

(1)面积的最大值为,则:

,解得:

椭圆的方程为:

(2)假设轴上存在点是以为直角顶点的等腰直角三角形

,线段的中点为

,消去可得:

,解得:

依题意有

可得:,可得:

可得:

代入上式化简可得:

则:,解得:

时,点满足题意;当时,点满足题意

轴上存在点,使得是以为直角顶点的等腰直角三角形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

2)设点在直线上,且.证明:过点P且垂直于OQ的直线C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,动直线l与椭圆E交于不同的两点,且△AOB的面积为1,其中O为坐标原点.

1)证明:为定值;

2)设线段AB的中点为M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,人体肺部结构中包含的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是(

A.,则为周期函数

B.对于的最小值为

C.在区间上是增函数,则

D.,满足,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=exax+aaR),其图象与x轴交于Ax10),Bx20)两点,且x1x2

1)求a的取值范围;

2)证明:f′()<0f′(x)为函数fx)的导函数);

3)设点C在函数yfx)的图象上,且△ABC为等腰直角三角形,记t,求(a1)(t1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调增区间;

2)令,且函数有三个彼此不相等的零点0mn,其中.

①若,求函数处的切线方程;

②若对恒成立,求实数t的去取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为;乙第一次射击的命中率为,若第一次未射中,则乙进行第二次射击,射击的命中率为,如果又未中,则乙进行第三次射击,射击的命中率为.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知,大型网络游戏(下面简称网游)的运行必须依托于网络的基础上,否则会出现频繁掉线的情况,进而影响游戏的销售和推广,某网游经销在甲地区5个位置对两种类型的网络(包括电信网通)在相同条件下进行游戏掉线的测试,得到数据如下:

位置

类型

A

B

C

D

E

电信

4

3

8

6

12

网通

5

7

9

4

3

1)如果在测试中掉线次数超过5次,则网络状况为糟糕,否则为良好,那么在犯错误的概率不超过0.15的前提下,能否说明网络状况与网络的类型有关?

2)若该游戏经销商要在上述接受测试的电信的5个地区中任选2个作为游戏推广,求AB两地区至少选到一个的概率.

参考公式:

查看答案和解析>>

同步练习册答案