【题目】众所周知,大型网络游戏(下面简称网游)的运行必须依托于网络的基础上,否则会出现频繁掉线的情况,进而影响游戏的销售和推广,某网游经销在甲地区5个位置对两种类型的网络(包括“电信”和“网通”)在相同条件下进行游戏掉线的测试,得到数据如下:
位置 类型 | A | B | C | D | E |
电信 | 4 | 3 | 8 | 6 | 12 |
网通 | 5 | 7 | 9 | 4 | 3 |
(1)如果在测试中掉线次数超过5次,则网络状况为“糟糕”,否则为“良好”,那么在犯错误的概率不超过0.15的前提下,能否说明网络状况与网络的类型有关?
(2)若该游戏经销商要在上述接受测试的电信的5个地区中任选2个作为游戏推广,求A,B两地区至少选到一个的概率.
参考公式:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,
为椭圆上一动点(异于左右顶点),
面积的最大值为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于点
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
的离心率
,左顶点为
,过点A作斜率为
的直线l交椭圆C于点D,交y轴于点E.
![]()
(1)求椭圆C的方程;
(2)已知点P为
的中点,是否存在定点Q,对于任意的
都有
?若存在,求出点Q的坐标,若不存在,说明理由;
(3)若过点O作直线l的平行线交椭圆C于点M,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,
,
,
为棱
上的动点.
![]()
(1)若
为
的中点,求证:
平面
;
(2)若平面
平面ABC,且
是否存在点
,使二面角
的平面角的余弦值为
?若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.
![]()
(1)证明:
平面
.
(2)三棱锥
的体积最大时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数
,函数![]()
(1)当
时,判断
在
上单调性,并加以证明;
(2)当
时,研究
的奇偶性,并说明理由;
(3)当
时,若存在区间
使得
在
上的值域为
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
分别为双曲线
的左、右焦点,以
为直径的圆与双曲线在第一象限和第三象限的交点分别为
,
,设四边形
的周长为
,面积为
,且满足
,则该双曲线的离心率为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com