ÓÐÏÂÁÐÃüÌ⣺
£¨1£©f£¨x£©=sin£¨2x+
¦Ð
3
£©µÄͼÏó¹ØÓÚÖ±Ïßx=
¦Ð
12
¶Ô³Æ£»
£¨2£©º¯Êýf£¨x£©=4cos£¨2x+
¦Ð
3
£©µÄͼÏó¹ØÓڵ㣨-
5
12
¦Ð£¬0£©¶Ô³Æ£»
£¨3£©º¯Êýf£¨x£©=tan£¨2x-
¦Ð
3
£©µÄͼÏóµÄËùÓжԳÆÖÐÐÄΪ£¨
k¦Ð
2
+
¦Ð
6
£¬0£©£¬k¡ÊZ£»
£¨4£©È纯Êýf£¨x£©=4cos£¨2x+
¦Ð
3
£©£¬ÔòÓÉf £¨x1£©=f £¨x2£©=0¿ÉµÃx1-x2±ØÊǦеÄÕûÊý±¶£»
£¨5£©º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊǦÕ=k¦Ð+
¦Ð
2
£¬k¡ÊZ£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ
 
£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£®£©
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺Èý½Çº¯ÊýµÄÇóÖµ,¼òÒ×Âß¼­
·ÖÎö£º±¾Ì⿼²éµÄ֪ʶµãÊÇ£¬ÅжÏÃüÌâÕæ¼Ù£¬±È½Ï×ۺϵĿ¼²éÁËÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÎÒÃÇ¿ÉÒÔ¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖʶÔËĸö½áÂÛÖðÒ»½øÐÐÅжϣ¬¿ÉÒԵõ½ÕýÈ·µÄ½áÂÛ£®
½â´ð£º ½â£º¶ÔÓÚ£¨1£©£¬µ±x=
¦Ð
12
ʱ£¬f£¨x£©=sin£¨2¡Á
¦Ð
12
+
¦Ð
3
£©=1£¬È¡µÃ×î´óÖµ£¬¹Ê£¨1£©ÕýÈ·£»
¶ÔÓÚ£¨2£©£¬µ±x=-
5
12
¦Ðʱ£¬f£¨x£©=4cos£¨2¡Á-
5
12
¦Ð+
¦Ð
3
£©=0£¬¹Ê£¨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©£¬º¯Êýf£¨x£©=tan£¨2x-
¦Ð
3
£©µÄͼÏóµÄËùÓжԳÆÖÐÐÄΪ£¨
k¦Ð
4
+
¦Ð
6
£¬0£©£¬k¡ÊZ£¬¹Ê£¨3£©´íÎó£»
¶ÔÓÚ£¨4£©£¬º¯Êýf£¨x£©=4cos£¨2x+
¦Ð
3
£©µÄÖÜÆÚΪ¦Ð£¬ÓÉf £¨x1£©=f £¨x2£©=0¿ÉµÃx1-x2±ØÊÇ
¦Ð
2
µÄÕûÊý±¶£¬¹Ê£¨4£©´íÎó£»
¶ÔÓÚ£¨5£©£¬º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊÇsin¦Õ=0£¬¼´¦Õ=k¦Ð£¬k¡ÊZ£¬¹Ê£¨5£©´íÎó£»
¹Ê´ð°¸Îª£º£¨1£©£¨2£©
µãÆÀ£º±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄÐÔÖÊ£¬×öÌâʱӦÈÏÕæÉóÌ⣬±ÜÃâ´íÎó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x|x2-2x-3£¼0}£¬B={x|log2x£¼2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A¡¢£¨-1£¬4£©
B¡¢£¨-1£¬3£©
C¡¢£¨0£¬3£©
D¡¢£¨0£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢0¡ÊAB¡¢6¡ÊA
C¡¢2∉AD¡¢1¡ÊA

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖУ¬ÓÐÀⳤΪaµÄÕý·½ÌåABCD-A1B1C1D1£¬µãMÊÇÏß¶ÎDC1Éϵ͝µã£¬ÔòµãMµ½Ö±ÏßAD1¾àÀëµÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÅжÏÏÂÁк¯ÊýÔÚ£¨-¡Þ£¬+¡Þ£©Äڵĵ¥µ÷ÐÔ£º
£¨1£©y=0.9x£»
£¨2£©y=£¨
¦Ð
2
£©-x£»
£¨3£©y=3
x
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA£¨1£¬0£©¡¢B£¨-2£¬0£©£¬¶¯µãMÂú×ã¡ÏMBA=2¡ÏMAB£¨¡ÏMAB¡Ù0£©£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=k£¨x+7£©£¬Çҹ켣EÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇóÖ±ÏßlбÂÊkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè½¹µãÔÚyÖáÉϵÄË«ÇúÏß½¥½üÏß·½³ÌΪy=¡À
3
3
x£¬Çó´ËË«ÇúÏßµÄÀëÐÄÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÍÖÔ²
x2
4
+y2=1µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬MΪÍÖÔ²ÉÏÒìÓÚ³¤Öá¶ËµãµÄÒ»µã£¬¡ÏF1MF2=2¦È£¬¡÷MF1F2µÄÄÚÐÄΪI£¬
Ôò|MI|cos¦È=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA£¬B£¬C£¬DÊǺ¯Êýy=sin£¨¦Øx+¦Õ£©Ò»¸öÖÜÆÚÄÚµÄͼÏóÉϵÄËĸöµã£¬ÈçͼËùʾ£¬A£¨-
¦Ð
6
£¬0£©£¬BΪyÖáÉϵĵ㣬CΪͼÏóÉϵÄ×îµÍµã£¬EΪ¸Ãº¯ÊýͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£¬BÓëD¹ØÓÚµãE¶Ô³Æ£¬
CD
ÔÚ¡÷ÖáÉϵÄͶӰΪ
¦Ð
12
£¬Ôò¦Ø£¬¦ÕµÄֵΪ£¨¡¡¡¡£©
A¡¢¦Ø=
1
2
£¬¦Õ=
¦Ð
3
B¡¢¦Ø=
1
2
£¬¦Õ=
¦Ð
6
C¡¢¦Ø=2£¬¦Õ=
¦Ð
6
D¡¢¦Ø=2£¬¦Õ=
¦Ð
3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸