精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\frac{x}{(1-x)^{2}}$的单调递增区间是(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出即可.

解答 解:f(x)=$\frac{x}{(1-x)^{2}}$,定义域是(-∞,1)∪(1,+∞),
f′(x)=$\frac{{(x-1)}^{2}-2x(x-1)}{{(x-1)}^{4}}$=-$\frac{x+1}{{(x-1)}^{3}}$,
令f′(x)>0,解得:-1<x<1,
故f(x)的单调递增区间是(-1,1),
故选:C.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知x、y、z∈(0,+∞),且3x=4y=6z
(1)求证:$\frac{1}{x}$+$\frac{1}{2y}$=$\frac{1}{z}$
(2)比较3x、4y、6z的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题P:若x>y则-x>-y,命题q:若x>y,则x2>y2.在命题:①p∧q,②¬p∨¬q③p∧(¬q),④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个物体的运动方程为s=1-t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是(  )
A.7米/秒B.6米/秒C.5米/秒D.8米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知c>0,设命题p:函数y=cx为减函数.命题q:当$x∈[{\frac{1}{2},2}]$时,函数f(x)=x+$\frac{1}{x}>\frac{1}{c}$恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围(  )
A.$({0,\frac{1}{2}})$B.$[{\frac{1}{2},1}]$C.$({0,\frac{1}{2}}]∪[{1,+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知奇函数f(x)在区间[-1,1]上是增函数,且f(1)=1,若函数f(x)≥t2-4at-1对所有的x∈[-1,1]都存在a∈[-1,1]使不等式成立,则实数t的取值范围是{0}}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x∈($\frac{3π}{2}$,2π),化简arccos(cosx)=2π-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax2-2x-1(x∈R).
(I)若f(x)在点(1,f(1))处的切线为l,且直线l在y轴上的截距为-2,求a的值;
(Ⅱ)求证:对任意实数a<0,都有f(x)>$\frac{{a}^{2}-a+1}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线l1:ax+2y+6=0与直线${l_2}:x+(a-1)y+{a^2}-1=0$平行,则a=(  )
A..2或-1B..2C.-1D.以上都不对

查看答案和解析>>

同步练习册答案