精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ex-ax2-2x-1(x∈R).
(I)若f(x)在点(1,f(1))处的切线为l,且直线l在y轴上的截距为-2,求a的值;
(Ⅱ)求证:对任意实数a<0,都有f(x)>$\frac{{a}^{2}-a+1}{a}$.

分析 (I)求出f(x)的导数,求得切线的斜率,运用两点斜率公式,计算即可得到a=-1;
(Ⅱ)原不等式即为ex>ax2+2x+a+$\frac{1}{a}$,运用指数函数的值域和二次函数的判别式小于0,即可得到证明.

解答 解:(I)函数f(x)=ex-ax2-2x-1的导数为f′(x)=ex-2ax-2,
可得切线的斜率f′(1)=e-2a-2,又f(1)=e-a-3,
直线l过(0,-2),可得e-a-1=e-2a-2,
解得a=-1:
(Ⅱ)证明:f(x)>$\frac{{a}^{2}-a+1}{a}$即为
ex-ax2-2x-1>a+$\frac{1}{a}$-1,即有ex>ax2+2x+a+$\frac{1}{a}$,
由ex>0,y=ax2+2x+a+$\frac{1}{a}$,a<0,
△=4-4a(a+$\frac{1}{a}$)=4-4a2-4=-4a2<0,
即有y<0恒成立,
则ex>ax2+2x+a+$\frac{1}{a}$成立.
故原不等式成立.

点评 本题考查导数的运用:求切线的斜率,考查不等式的证明,注意运用转化思想,运用指数函数的值域和二次函数的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a>0,且a≠1,下列函数中,在其定义域内是单调函数而且又是奇函数的是(  )
A.y=sinaxB.y=logax2C.y=ax-a-xD.y=tanax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{x}{(1-x)^{2}}$的单调递增区间是(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,且正实数λ,μ满足($\overrightarrow{a}$+$\overrightarrow{b}$-$λ\overrightarrow{a}$)•($\overrightarrow{a}$+$\overrightarrow{b}$-$μ\overrightarrow{b}$)=0,则|$λ\overrightarrow{a}$-$μ\overrightarrow{b}$|的取值范围是[$\sqrt{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=a3-2a+(m+a)i(a≥0,m∈R)的实部大于虚部,则m的取值范围为(  )
A.(-∞,-2)B.(-2,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果两条直线l1,l2中的一条斜率不存在,另一个斜率是零,那么l1与l2的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点M是直线l:y=$\sqrt{3}$x-4与y轴的交点,把直线l绕点M逆时针旋转60°,求所得直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足(x-2)2+(y-3)2=1,则z=x2+y2的最小值为14-2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在长方体ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,点E是AB的中点.
(1)求三棱锥C-DD1E的体积;
(2)求证:D1E⊥A1D.

查看答案和解析>>

同步练习册答案