精英家教网 > 高中数学 > 题目详情
9.已知奇函数f(x)在区间[-1,1]上是增函数,且f(1)=1,若函数f(x)≥t2-4at-1对所有的x∈[-1,1]都存在a∈[-1,1]使不等式成立,则实数t的取值范围是{0}}.

分析 由f(1)=1得f(-1)=-1,f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,只需要f(x)的最小值大于或等于t2-4at+1即可.再利用二次函数的性质求得t的范围.

解答 解:∵函数f(x)是奇函数,且在[-1,1]是单调增函数,又f(1)=1,∴f(-1)=-1,
∴当x∈[-1,1]时,f(x)∈[-1,1].
若函数f(x)≥t2-4at-1对所有的x∈[-1,1]都成立,由已知易得f(x)的最小值是-1,
∴-1≥t2-4at-1,等价于t2-4at≤0.
设g(a)=t2-4at(-1≤a≤1),
欲使 t2-4at≤0恒成立,则 $\left\{\begin{array}{l}{g(-1){=t}^{2}+4t≤0}\\{g(1){=t}^{2}-4t≤0}\end{array}\right.$,求得t=0,
故答案为:{0}.

点评 本题考查的知识点是奇偶性与单调性的综合,其中根据已知结合函数的奇偶性与单调性判断出当x∈[-1,1]时,函数f(x)值域,是解答本题的关键,考查了函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.经过两点A(2,3),B(-1,x)的直线l1与经过点P(2,0)且斜率为1的直线l2平行,则x的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x|x-1|
(1)画出该函数的图象;
(2)求函数f(x)的单调区间;
(3)设0<a<1,求f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.2016°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{x}{(1-x)^{2}}$的单调递增区间是(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如果数列{an}、{bn}是项数相同的两个等差数列,p,q是常数,那么数列{pan+qbn}是等差数列吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,且正实数λ,μ满足($\overrightarrow{a}$+$\overrightarrow{b}$-$λ\overrightarrow{a}$)•($\overrightarrow{a}$+$\overrightarrow{b}$-$μ\overrightarrow{b}$)=0,则|$λ\overrightarrow{a}$-$μ\overrightarrow{b}$|的取值范围是[$\sqrt{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果两条直线l1,l2中的一条斜率不存在,另一个斜率是零,那么l1与l2的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某初中对初二年级的学生进行体质测试,已知初二一班共有学生30人,测试立定跳远的成绩用茎叶图表示如下(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”;
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中用分层抽样的方法抽取6个人,求抽取成绩“合格”的学生人数;
(3)若从全班成绩“合格”的学生中选取2个人参加复试,用X表示其中男生的人数,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

同步练习册答案