精英家教网 > 高中数学 > 题目详情

【题目】已知圆C,直线l

求证:直线l与圆C必相交;

求直线l被圆C截得的弦长最短时直线l的方程以及最短弦长.

【答案】(1)详见解析;(2).

【解析】

1根据直线l方程得到直线l恒过,求出距离小于半径,即可得到直线l与圆C必相交;

2当直线直线MC时,直线l被圆C截得的弦长最短,求出直线MC的斜率,根据两直线垂直时斜率乘积为求出直线l斜率,根据M坐标确定出直线l方程,利用垂径定理,勾股定理求出最短弦长即可.

1证明:根据题意得:直线l恒过点,

圆心,半径为5,

为圆内,

则直线l与圆C必相交;

2当直线直线MC时,直线l被圆C截得的弦长最短,

设直线MC解析式为

MC坐标代入得:

解得:

直线MC解析式为

直线l斜率为2,

直线l过点M

直线l方程为,即

根据题意得:最短弦长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求证:当时,

(Ⅲ)若对任意恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知所在的平面, 的直径, 上一点,且中点, 中点.

(1)求证:

(2)求证:

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处取得极值.

(1)求函数的解析式;

(2)设函数,是否存在实数,使得曲线轴有两个交点,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f′(x)是函数f(x)的导函数,f(x)的图象如图所示,则不等式f′(x)f(x)<0的解集为(

A.(1,2)∪( ,3)∪(﹣∞,﹣1)
B.(﹣∞,﹣1)∪( ,3)
C.(﹣∞,﹣1)∪(3,+∞)
D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据2,,如表所示:

试销单价

4

5

6

7

8

9

产品销量

90

84

83

80

q

68

已知

求表格中q的值;

已知变量xy具有线性相关性,试利用最小二乘法原理,求产品销量y关于试销单价x的线性回归方程参考数据

中的回归方程得到的与对应的产品销量的估计值记为2,时,则称为一个“理想数据”试确定销售单价分别为4,5,6时有哪些是“理想数据”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区规划时,计划在周边建造一片扇形绿地,如图所示已知扇形绿地的半径为50米,圆心角从绿地的圆弧边界上不同于A,B的一点P处出发铺设两条道路PO与均为直线段,其中PC平行于绿地的边界其中

时,求所需铺设的道路长:

若规划中,绿地边界的OC段也需铺设道路,且道路的铺设费用均为每米100元,当变化时,求铺路所需费用的最大值精确到1元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案