【题目】若函数f(x)= +bx+c有极值点x1 , x2(x1<x2),且f(x1)=x1 , 则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:函数f(x)=x3+ ax2+bx+c有两个极值点x1 , x2 , ∴f′(x)=3x2+ax+b=0有两个不相等的实数根,
∴△=a2﹣12b>0.
而方程3(f(x))2+af(x)+b=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2 ,
不妨取0<x1<x2 , f(x1)>0.
①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,
∵f(x1)=x1 , 可知方程f(x)=x1有两解.
②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1 , ∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.
综上①②可知:方程f(x)=x1或f(x)=x2 . 只有3个实数解.即关于x的方程3(f(x))2+af(x)+b=0的只有3不同实根.
故选:C.
【考点精析】认真审题,首先需要了解函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 . (Ⅰ)求f(x)的解析式;
(Ⅱ)当 ,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ , ]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理中是演绎推理的序号为( )
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+)
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i=1,2,…,8)数据作了初步处理,得到右面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为.根据(2)的结果回答下列问题:
①年宣传费=49时,年销售量及年利润的预报值是多少?
②年宣传费为何值时,年利润的预报值最大?
附:对于一组数据, …,,其回归直线的斜率和截距的最小二乘估计分别为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为零的等差数列{an}的前4项和为10,且a2 , a3 , a7成等比数列.
(Ⅰ)求通项公式an
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆: ,点,点(),以为圆心, 为半径作圆,交圆于点,且的平分线交线段于点.
(1)当变化时,点始终在某圆锥曲线上运动,求曲线的方程;
(2)已知直线 过点 ,且与曲线交于 两点,记面积为, 面积为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E﹣ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com