精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(x)在x∈[4,12]上的最大值为c,且C=$\frac{π}{3}$.求△ABC的面积的最大值.

分析 (Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数y=f(x)的解析式.
(Ⅱ)在△ABC中,由条件求出c,再利用余弦定理求得ab的最大值为1,可得△ABC的面积为$\frac{1}{2}$ab•sinC 的最大值.

解答 解:(Ⅰ)根据函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的图象可得A=$\sqrt{2}$,$\frac{T}{2}$=$\frac{π}{ω}$=6+2,∴ω=$\frac{π}{8}$.
再根据五点法作图可得-2×$\frac{π}{8}$+φ=0,∴φ=$\frac{π}{4}$,∴f(x)=$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
(Ⅱ)在△ABC中,f(x)=$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$)在x∈[4,12]上的最大值为c=1(此时,x=4).
由C=$\frac{π}{3}$,利用余弦定理可得c2=1=a2+b2-2ab•cosC≥2ab-ab=ab,当且仅当a=b时,取等号,
故ab的最大值为1.
则△ABC的面积为$\frac{1}{2}$ab•sinC=$\frac{1}{2}$×ab×$\frac{\sqrt{3}}{2}$≤$\frac{\sqrt{3}}{4}$,故△ABC的面积的最大值为$\frac{\sqrt{3}}{4}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.还考查了余弦定理、基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{2,x∉[-2,2]}\\{|x|,x∈[-2,2]}\end{array}\right.$,则其最小值为(  )
A.2B.0C.-2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用定义证明:函数f(x)=x+$\frac{2}{x}$在($\sqrt{2}$,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x-4y≥0},则Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示区域的面积为18+π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\sqrt{(1-{a}^{2}){x}^{2}}$+3(1-a)x+b,f(x)定义域为R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex-mx-exlnx+1,且定义域为(0,e],若函数f(x)在定义域内有两个极值点,则m的取值范围为(  )
A.[0,ee-2e]B.(0,ee-2e]C.(0,ee-2e)D.(ee-2e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=2x,则如图所示的函数图象(  )
A.y=f(|x|)B.y=-|f(x)|C.y=-f(-|x|)D.y=f(-|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数据x1,x2,x3,…,xn是武汉市n(n≥3,n∈N*)个普通职工的2014年的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上比尔.盖茨的2014年的年收入xn+1(约80亿美元),则这n+1个数据中,下列说法正确的是(  )
A.年收入平均数大大增大,中位数一定变大,方差可能不变
B.年收入平均数大大增大,中位数可能不变,方差变大
C.年收入平均数大大增大,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,a3+a5=10,{an}的前n项和为Sn,S3=15.
(1)求数列{an}的通项公式;
(2)设bn=($\frac{1}{2}$)n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案