精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2-2|x|-1,-3≤x≤3.

(1)证明:f(x)是偶函数;

(2)指出函数f(x)的单调区间;

(3)求函数的值域.

【答案】(1)见解析(2) 单调区间为[-3,-1],[-1,0],[0,1],[1,3]. (3) [-2,2].

【解析】试题分析:(1)先确定定义域,验证关于原点对称,再计算f(-x),证明与f(x)相等(2)画出函数图像,根据对称轴确定单调区间(3)根据图像,由最高点与最低点确定函数最值以及值域

试题解析:(1)∵f(-x)=(-x)2-2|-x|-1=f(x),

∴f(x)为偶函数.

(2)f(x)=

∴f(x)的单调区间为[-3,-1],[-1,0],[0,1],[1,3].

(3)f(x)的值域为[-2,2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A是同时符合以下性质的函数f(x)组成的集合:

x[0,+),都有f(x)∈(1,4]f(x)[0,+)上是减函数.

(1)判断函数f1(x)2f2(x)1 (x0)是否属于集合A,并简要说明理由;

(2)(1)中你认为是集合A中的一个函数记为g(x),若不等式g(x)g(x2)k对任意的x0总成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,知识告知大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;

(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分,

①请你从平均分和方差的角度来分析两个班的选手的情况;

②主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;

(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且时, ,则函数为自然对数的底数)的零点个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;

(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}a13a1021通项an相应的函数是一次函数.

(1) 求数列{an}的通项公式;

(2) {bn}是由a2a4a6a8…组成试求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},满足BCC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合其中,集合.

(1)若,求实数的取值范围;

(2)若,求实数的取值范围.

查看答案和解析>>

同步练习册答案