精英家教网 > 高中数学 > 题目详情
已知函数
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)设函数.若至少存在一个,使得成立,求实数的取值范围.
(1);(2)时,上单调递减;当时,单调递增区间为,单调递减区间为时, 在上单调递增;(3)实数的取值范围为.

试题分析:(1)当时,先确定,接着求出,进而求出,最后由直线的点斜式即可写出所求的切线方程;(2)先确定函数的定义域,设,接着针对这个二次函数开口方向及与轴正半轴有多少个交点的问题分三类进行讨论,进而确定各种情况下的函数的单调区间,最后将各个情况综合描述即可;(3)法一:先将至少存在一个,使得成立的问题等价转化为:令,等价于“当 时,”,进而求取即可解决本小问;法二:设,定义域为,进而将问题转化为等价于当 时,,从中对参数,进行求解即可.
函数的定义域为   1分
(1)当时,函数
所以曲线在点处的切线方程为
         4分
(2)函数的定义域为
1.当时,上恒成立
上恒成立,此时上单调递减     5分
2.当时,
(ⅰ)若
,即,得      6分
,即,得         7分
所以函数的单调递增区间为,单调递减区间为  9分
(ⅱ)若上恒成立,则上恒成立,此时 在上单调递增                        10分
综上可知:时,上单调递减;当时,单调递增区间为,单调递减区间为时, 在上单调递增
(3)因为存在一个使得
,等价于                   12分
,等价于“当 时,
求导,得                 13分
因为当时,,所以上单调递增
所以,因此                16分
另解:设,定义域为

依题意,至少存在一个,使得成立
等价于当 时,               11分
(1)当
恒成立,所以单调递减,只要
则不满足题意        12分
(2)当时,令
(ⅰ)当,即
,所以上单调递增
所以,由得,,所以   13分
(ⅱ)当,即
,所以单调递减
所以,由      14分
(ⅲ)当,即时, 在,在
所以单调递减,在单调递增
,等价于,解得,所以,       15分
综上所述,实数的取值范围为               16分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数定义在上,,导函数
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(Ⅰ)当时,
(1)若,求函数的单调区间;
(2)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f′′(x)是函数y=f(x)的导数f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有′拐点′;任何一个三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一发现作为条件,则函数f(x)=x3-3x2+3x的对称中心为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;  
(3)设为两曲线的交点,且两曲线在交点处的切线分别为.若取,试判断当直线轴围成等腰三角形时值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=(  )
A.﹣4B.﹣2C.2D.4

查看答案和解析>>

同步练习册答案