精英家教网 > 高中数学 > 题目详情
15.f(x)=ax+sinx是R上的增函数,则实数a的范围是(  )
A.(-∞,1]B.(-∞,1)C.(1,+∞)D.[1,+∞)

分析 求函数的导数,利用函数单调性和导数之间的关系进行求解即可.

解答 解:∵f(x)=ax+sinx是R上的增函数,
∴f′(x)≥0恒成立,
即f′(x)=a+cosx≥0,
即a≥-cosx,
∵-1≤-cosx≤1,
∴a≥1,
故选:D

点评 本题主要考查函数单调性的应用,求函数的导数,转化为f′(x)≥0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表,某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).
(Ⅰ)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论不要求证明)
(Ⅱ)求此人到达当日空气质量优良的概率;
(Ⅲ)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.
 空气质量指数污染程度 
 小于100 优良
 大于100且小于150 轻度
 大于150且小于200 中度
 大于200且小于300 重度
 大于300且小于500 严重
 大于500 爆表

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z∈C,|z-2i|=$\sqrt{2}$,当z取何值时,|z+2-4i|分别取得最大值和最小值?并求出最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=n(1-an
(1)求证:{an-1}为等比数列;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的通项公式为an=(-1)n(2n-1),则a1+a2+…+a10=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}是公差为1的等差数列,数列{bn}是公比为2的等比数列,且a1+b2=6,a4-b1=3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列$\{{a_n}+\frac{1}{b_n}\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].

(Ⅰ)根据频率分布直方图,估计该企业的职工对该部门评分的平均值;
(Ⅱ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x∈R,向量$\overrightarrow a=(x,1),\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow a|$=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.$\sqrt{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$sin\frac{α}{2}-cos\frac{α}{2}=\frac{{\sqrt{5}}}{5},α∈({\frac{π}{2},π})$,则cosα=-$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案