分析 (1)由an+1=Sn+1-Sn=2an+1-2an+1,能证明{an-1}是以-2为首项,2为公比的等比数列.
(2)由${b}_{n}=n•{2}^{n}$,利用错位相减法能求出数列{bn}的前n项和Tn.
解答 证明:(1)∵数列{an}的前n项和为Sn,Sn=2an+n,
∴Sn+1=2an+1+n+1,
∴an+1=Sn+1-Sn=2an+1-2an+1,
∴an+1=2an-1,
∴an+1-1=2(an-1),
∴{an-1}是以-2为首项,2为公比的等比数列.
解:(2)由(1)得${a}_{n}-1=-2×{2}^{n-1}=-{2}^{n}$,即${a}_{n}=-{2}^{n}+1$,
∵bn=n(1-an),∴${b}_{n}=n•{2}^{n}$,
∴Tn=1•2+2•22+…+n•2n,①
2Tn=1•22+2•23+…+n•2n+1,②
①-②,得:-Tn=2+22+…+2n-n•2n+1
=$\frac{2({2}^{n}-1)}{2-1}-n•{2}^{n+1}$
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
点评 本题考查等比数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{8}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com