精英家教网 > 高中数学 > 题目详情
若直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,则a,b,c满足的条件是(  )
A、a=b
B、|a|=|b|
C、c=0或a=b
D、c=0或|a|=|b|
考点:直线的截距式方程
专题:直线与圆
分析:当c=0时,直线ax+by+c=0(ab≠0)过原点,在两坐标轴上的截距相等,当c≠0时,直线在两坐标轴上的截距分别为-
c
b
和-
c
a
,由题意可得-
c
b
=-
c
a
,故a=b,由此得出结论.
解答: 解:当c=0时,直线ax+by+c=0(ab≠0)过原点,在两坐标轴上的截距相等.
当c≠0时,直线在两坐标轴上的截距分别为-
c
b
和-
c
a
,由题意可得-
c
b
=-
c
a
,故a=b.
综上,当c=0或c≠0且a=b时,直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,
故选C.
点评:本题主要考查直线的一般式方程,直线在两坐标轴上的截距的定义,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b∈R+,a+b-2a2b2=4,则
1
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
<0;
④f(
x1+x2
2
)>
f(x1)+f(x2)
2

当f(x)=lnx时,上述结论中正确的序号是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,2),直线l:y=2x+1.
(1)求点A关于直线l的对称点A′的坐标;
(2)当点B,C分别在x轴和直线l上运动时,求△ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin2x的图象向左平移φ(φ>0)个单位,可得到函数y=sin(2x+
π
4
)
的图象,则φ的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆
x2
4
+
y2
3
=1的左焦点为圆心,长轴长为半径的圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且满足cos2α=sinα,则α等于(  )
A、30°或270°B、45°
C、60°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x2+x+1
x>0
ex-
3
4
x ≤ 0
,则函数f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为
 
海里/时.

查看答案和解析>>

同步练习册答案