精英家教网 > 高中数学 > 题目详情
2.已知a、b、c>1,且a+b+c=9.证明:$\sqrt{ab+bc+ca}$≤$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$.

分析 设a=$\frac{9{x}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,b=$\frac{9{y}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,c=$\frac{9{z}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,x+y+z=1,则原不等式即为x2+y2+z2≥9(x2y2+y2z2+z2x2),不妨设x≥y≥z,则$\frac{1}{3\sqrt{3}}$≤z≤$\frac{1}{3}$,令f(x,y,z)=x2+y2+z2-9(x2y2+y2z2+z2x2),证明大于等于0,运用分析法,即可得证.

解答 证明:设a=$\frac{9{x}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,b=$\frac{9{y}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,c=$\frac{9{z}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}$,x+y+z=1,
则原不等式即为x2+y2+z2≥9(x2y2+y2z2+z2x2),
由a≥1,9x2=a(x2+y2+z2)≥x2+y2+z2≥$\frac{(x+y+z)^{2}}{3}$=$\frac{1}{3}$,
即有x≥$\frac{1}{3\sqrt{3}}$,同理y≥$\frac{1}{3\sqrt{3}}$,z≥$\frac{1}{3\sqrt{3}}$,
不妨设x≥y≥z,则$\frac{1}{3\sqrt{3}}$≤z≤$\frac{1}{3}$,
$\frac{1}{3}$≤$\frac{x+y}{2}$=$\frac{1-z}{2}$≤$\frac{3\sqrt{3}-1}{6\sqrt{3}}$,
令f(x,y,z)=x2+y2+z2-9(x2y2+y2z2+z2x2),
则f(x,y,z)-f($\frac{x+y}{2}$,$\frac{x+y}{2}$,z)=$\frac{(x-y)^{2}}{2}$[1-9z2+$\frac{9}{8}$(x+y)2+$\frac{9}{2}$xy]≥0,
只需证t∈[$\frac{1}{3}$,$\frac{3\sqrt{3}-1}{6\sqrt{3}}$],f(t,t,1-2t)≥0.
而f(t,t,1-2t)=2t2+(1-2t)2-9[t4+2t2(1-2t)2]
=(3t-1)2(1+2t-9t2)≥0?$\frac{1-\sqrt{10}}{9}$≤t≤$\frac{1+\sqrt{10}}{9}$.
故只需验证$\frac{3\sqrt{3}-1}{6\sqrt{3}}$<$\frac{1+\sqrt{10}}{9}$.显然成立.
则原不等式成立.

点评 本题考查不等式的证明,注意运用换元法和柯西不等式,以及构造函数法,不等式的性质,考查推理和运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合M={y|$\frac{x}{4}$+$\frac{y}{2}$=1},N={x|${\frac{x^2}{16}}\right.$+$\frac{y^2}{4}$=1},则M∩N=(  )
A.B.{(4,0),(0,2)}C.{4,2}D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,互不相同的点A1、A2、…An、…,Bi、B2、…Bn、…,Cl、C2、…Cn、…分别在以O为顶点的三棱锥的三条侧棱上,所有平面AnBnCn互相平行,且所有三棱台AnBnCn-An+1Bn+1Cn+1的体积均相等,设OAn=an,若a1=$\sqrt{2}$,a2=2,则an=$\root{3}{8n-2\sqrt{2}n-8+4\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥S-ABC的各顶点都在一个半径为1的球面上,球心O在AB上,SO⊥底面ABC,$AC=\sqrt{2}$,则此三棱锥的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线C:y2=8x的焦点为F,P是C上一点,Q(-2,y0)是x轴上方一点,若△PQF是等边三角形,则y0的值为(  )
A.$4\sqrt{3}$B.$3\sqrt{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(3,4),F是抛物线y2=8x的焦点,M是抛物线上的动点,则|MA|+|MF|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=4x的焦点F作倾斜角为45°的弦AB,则AB的弦长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点为F,过F作垂直于x轴的直线交抛物线于A,B,两点,△AOB的面积为8,直线l与抛物线C相切于Q点,P是l上一点(不与Q重合).
(Ⅰ)求抛物线C的方程;
(Ⅱ)若以线段PQ为直径的圆恰好经过F,求|PF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b∈R+,求证:(a+$\frac{1}{a}$)(b+$\frac{1}{b}$)≥4,并说明等号成立的条件.

查看答案和解析>>

同步练习册答案