精英家教网 > 高中数学 > 题目详情
已知ω>0,函数f(x)=cos(ωx+
π
4
)在(
π
2
,π)上单调递增,则ω的取值范围是(  )
A、[
1
2
5
4
]
B、[
1
2
7
4
]
C、[
3
4
9
4
]
D、[
3
2
7
4
]
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:根据函数y=cosx的单调递增区间,结合函数在(
π
2
,π)上单调递增,得出关于ω的不等式(组),从而求出ω的取值范围.
解答: 解:∵函数y=cosx的单调递增区间是[-π+2kπ,2kπ],k∈Z;
∴-π+2kπ≤ωx+
π
4
<ωπ+
π
4
≤2kπ,k∈Z;
解得:
-5π
+
2kπ
ω
≤x≤
2kπ
ω
-
π
(k∈Z),
∵函数f(x)=cos(ωx+
π
4
)在(
π
2
,π)上单调递增,
∴(
π
2
,π)⊆[
-5π
+
2kπ
ω
2kπ
ω
-
π
](k∈Z),
解得4k-
5
2
≤ω≤2k-
1
4

又∵4k-
5
2
-(2k-
1
4
)≤0,且2k-
1
4
>0,
∴k=1,
∴ω∈[
3
2
7
4
].
故选:D.
点评:本题考查了三角函数的图象与性质的应用问题,解题的关键是列出关于ω的不等式(组),是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2+2(x≤0)的反函数f-1(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足不等式组
x+y≤2
y-x≤2
y≥1
,则x2+y2的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若存在x1,x2∈A,当f(x1)=f(x2)时,x1≠x2,则称f(x)为多值函数,给出下列命题:
①f(x)=
2
x
不是多值函数
②f(x)=x2-2x是多值函数
③f(x)=
log2x,x≥2
2-x, x<2
不是多值函数
④f(x)是多值函数,若x1,x2∈A且x1≠x2,则f(x1)=f(x2
⑤若f(x)是定义域上单调函数,则f(x)不是多值函数
其中真命题的序号是
 
(填出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:sin300°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:①相等的角,在直观图中仍相等;②长度相等的线段,在直观图中长度仍相等;③若两条线段平行,在直观图中对应的线段仍平行;④若两条线段垂直,则在直观图中对应的线段也互相垂直.其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

7人排成一排,限定甲要排在乙的左边,乙要排在丙的左边,甲、乙相邻,乙、丙不相邻,则不同排法的种数是(  )
A、60B、120
C、240D、360

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是空间三条直线,下列说法中:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a,b相交,b,c相交,则a,c也相交;④若a,b共面,b,c共面,则a,c也共面.其中正确命题的个数为(  )
A、3B、1C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线x2=4y的准线与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线相交于A,B两点,若|AB|=1,则双曲线C的离心率是(  )
A、
5
B、
5
2
C、
17
D、
17
2

查看答案和解析>>

同步练习册答案