分析 (1)根据函数y=ax2过点D,求出解析式y=2x2;
由$\left\{\begin{array}{l}{y=kx+b}\\{y={2x}^{2}}\end{array}\right.$消去y,利用△=0证明结论成立;
(2)①写出点P的坐标(t,2t2),代入直线MN的方程,用t表示出直线方程,
利用直线方程求出M、N的坐标;
②将四边形MABN的面积S表示成关于t的函数S(t),
利用基本不等式即可求出S的最大值.
解答 (1)证明:函数y=ax2过点D(1,2),
代入计算得a=2,
∴y=2x2;
由$\left\{\begin{array}{l}{y=kx+b}\\{y={2x}^{2}}\end{array}\right.$,消去y得2x2-kx-b=0,
由线段MN与曲线OD有且只有一个公共点P,
得△=(-k)2-4×2×b=0,
解得b=-$\frac{{k}^{2}}{8}$;
(2)解:设点P的横坐标为t,则0<t<1,
∴点P(t,2t2);
①直线MN的方程为y=kx+b,
即y=kx-$\frac{{k}^{2}}{8}$过点P,
∴kt-$\frac{{k}^{2}}{8}$=2t2,
解得k=4t;
y=4tx-2t2
令y=0,解得x=$\frac{t}{2}$,∴M($\frac{t}{2}$,0);
令y=2,解得x=$\frac{t}{2}$+$\frac{1}{2t}$,∴N($\frac{t}{2}$+$\frac{1}{2t}$,2);
②将四边形MABN的面积S表示成关于t的函数为
S=S(t)=2×2-$\frac{1}{2}$×2×[$\frac{t}{2}$+($\frac{t}{2}$+$\frac{1}{2t}$)]=4-(t+$\frac{1}{2t}$),其中0<t<1;
由t+$\frac{1}{2t}$≥2•$\sqrt{t•\frac{1}{2t}}$=$\sqrt{2}$,当且仅当t=$\frac{1}{2t}$,即t=$\frac{\sqrt{2}}{2}$时“=”成立,
所以S≤4-$\sqrt{2}$;即S的最大值是4-$\sqrt{2}$.
点评 本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{4}{3}$ | C. | $-\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 2 | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com