精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.
(1)求证:BA•BM=BC•BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

【答案】分析:(1)连接MN,构造一个直角三角形.即可把证明的线段放到两个直角三角形中,根据相似三角形的判定和性质进行证明;
(2)连接OM,根据切线的性质得到直角△COM,再根据直角三角形斜边上的中线等于斜边的一半,得到MN等于圆的半径,从而发现等边三角形OMN,再根据圆周角定理得到∠B=30°,根据30°所对的直角边是斜边的一半即可求得AB的长.
解答:(1)证明:连接MN,
则∠BMN=90°=∠ACB,
∴△ACB∽△NMB,

∴AB•BM=BC•BN;
(2)解:连接OM,则∠OMC=90°,
∵N为OC中点,
∴MN=ON=OM,
∴∠MON=60°,
∵OM=OB,
∴∠B=∠MON=30°,
∵∠ACB=90°,
∴AB=2AC=2×3=6.
点评:注意:连接直径构造直角三角形,连接过切点的半径都是圆中常见的辅助线.熟练运用直角三角形的性质能够发现等边三角形,进一步运用圆周角定理发现特殊的直角三角形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案