分析 由条件利用同角三角函数的基本关系求得tanα的值,再利用二倍角的正切公式求得tan2α的值.
解答 解:∵已知α是第二象限的角,且$sinα=\frac{3}{5}$,∴cosα=-$\sqrt{{1-in}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{-\frac{3}{2}}{1-\frac{9}{16}}$=$\frac{24}{7}$,
故答案为:-$\frac{24}{7}$.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 5 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24种 | B. | 72种 | C. | 96种 | D. | 108种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com