12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬½¹¾àΪ2$\sqrt{2}$£¬¹ýµãD£¨1£¬0£©Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µ±Ö±ÏßlµÄбÂÊΪ-1ʱ£¬Çó|AB|£»
£¨3£©ÈôÖ±Ïßl´¹Ö±ÓÚxÖᣬµãEµÄ×ø±êΪ£¨2£¬1£©£¬Ö±ÏßAEÓëÖ±Ïßx=3½»ÓÚµãM£¬ÇóÖ±ÏßBMµÄбÂÊ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬½âµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÓÉÌâÒâ¿ÉµÃÖ±Ïßl£ºy=1-x£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ½»µã£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©ÓÉÖ±Ïßl¹ýD£¨1£¬0£©ÇÒ´¹Ö±ÓÚxÖᣬÉèA£¨1£¬y1£©£¬B£¨1£¬-y1£©£¬ÇóµÃAEµÄ·½³Ì£¬ÇóµÃMµÄ×ø±ê£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ2c=2$\sqrt{2}$£¬$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬
½âµÃa=$\sqrt{3}$£¬c=$\sqrt{2}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{3}$+y2=1£»
£¨2£©ÓÉÌâÒâ¿ÉµÃÖ±Ïßl£ºy=1-x£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ
2x2-3x=0£¬½âµÃx=0»ò$\frac{3}{2}$£¬¼´A£¨0£¬1£©£¬B£¨$\frac{3}{2}$£¬-$\frac{1}{2}$£©£¬
¼´ÓÐ|AB|=$\sqrt{£¨0-\frac{3}{2}£©^{2}+£¨1+\frac{1}{2}£©^{2}}$=$\frac{3\sqrt{2}}{2}$£»
£¨3£©ÓÉÖ±Ïßl¹ýD£¨1£¬0£©ÇÒ´¹Ö±ÓÚxÖᣬÉèA£¨1£¬y1£©£¬B£¨1£¬-y1£©£¬
AEµÄ·½³ÌΪy-1=£¨1-y1£©£¨x-2£©£¬Áîx=3¿ÉµÃM£¨3£¬2-y1£©£¬
¼´ÓÐBMµÄбÂÊΪk=$\frac{2-{y}_{1}-£¨-{y}_{1}£©}{3-1}$=1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬Ç󽻵㣬¿¼²éÖ±ÏßµÄбÂʹ«Ê½ºÍÁ½µãµÄ¾àÀ빫ʽµÄÔËÓã¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}-a£¬x¡Ü0}\\{{x}^{2}-3ax+a£¬x£¾0}\end{array}\right.$ÓÐÈý¸ö²»Í¬µÄÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{4}{9}$£¬1]B£®[$\frac{4}{9}$£¬1]C£®£¨$\frac{4}{9}$£¬+¡Þ£©D£®£¨0£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªa¡ÊR£¬º¯Êýf£¨x£©=lnx-ax2£¨x¡Ê£¨1£¬2£©£¬¼¯ºÏD⊆R+£®
£¨¢ñ£©Èôf£¨x£©£¾0£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©Èô¶ÔÈÎÒâx¡Ê£¨1£¬2£©£¬ÈÎÒât¡ÊD£¬ÓÐ$\frac{x-1}{f£¨x£©}$£¾t£¬ÇóaµÄÖµºÍ¼¯ºÏD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÈçͼ¼¸ºÎÌåA1C1E1-ABCDEFµ×ÃæÊDZ߳¤Îª2µÄÁù±äÐΣ¬AA1£¬CC1£¬EE1³¤¶ÈΪ2ÇÒ¶¼´¹Ö±Óëµ×Ãæ£¬
£¨1£©ÇóÖ¤£ºÆ½ÃæA1C1E1¡ÎÆ½ÃæABCDEF
£¨2£©Ç󼸺ÎÌåA1C1E1-ABCDEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæÎª¾ØÐΣ¬PA¡Íµ×ÃæABCD£¬ÇÒPA=AD£¬MΪABµÄÖе㣮
£¨1£©ÔÚ²àÀâPCÉÏÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹MN¡ÎÆ½ÃæPAD£¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©ÇóÖ¤£ºÆ½ÃæPMC¡ÍÆ½ÃæPCD£»
£¨3£©µ±$\frac{AB}{AD}$È¡ºÎÖµ£¬Æ½ÃæPADÓëÆ½ÃæPMCËù³ÉµÄÈñ¶þÃæ½ÇΪ45¡ã£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬¸Ã¼¸ºÎÌåµÄ²àÃæ»ý£¨¡¡¡¡£©
A£®5¦ÐB£®4¦ÐC£®3¦ÐD£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=2£¬AD=4£¬µãEÔÚÏß¶ÎADÉÏÇÒAE=3£¬ÏÖ·Ö±ðÑØBE£¬CE½«¡÷ABE£¬¡÷DCE·­ÕÛ£¬Ê¹µÃµãDÂäÔÚÏß¶ÎAEÉÏ£¬Ôò´Ëʱ¶þÃæ½ÇD-EC-BµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{4}{5}$B£®$\frac{5}{6}$C£®$\frac{6}{7}$D£®$\frac{7}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔڵȲîÊýÁÐ{an}ÖУ¬¹«²îd¡Ù0£¬a1=7£¬ÇÒa2£¬a5£¬a10³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°ÆäǰnÏîºÍSn£»
£¨2£©Èô${b_n}=\frac{5}{{{a_n}•{a_{n+1}}}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýy=x2cosxÔÚx=1´¦µÄµ¼ÊýÊÇ£¨¡¡¡¡£©
A£®0B£®2cos1-sin1C£®cos1-sin1D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸