精英家教网 > 高中数学 > 题目详情
4.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D-EC-B的余弦值为(  )
A.$\frac{4}{5}$B.$\frac{5}{6}$C.$\frac{6}{7}$D.$\frac{7}{8}$

分析 在折叠前的矩形中连接BD交EC于O,得到BD⊥CE,从而得到折起后,∴∠BOD是二面角D-EC-B的平面角,利用余弦定理进行求解即可.

解答 解:在折叠前的矩形中连接BD交EC于O,
∵BC=4,CD=2,CD=2,DE=1,
∴$\frac{BC}{CD}=\frac{CD}{DE}$,即△BCD∽△CDE,
∴∠DBC=∠ECD,
∴∠DBC=∠ECD,
∴∠ECD+∠ODC=90°,即BD⊥CE,
折起后,
∵BO⊥CE,DO⊥CE,
∴∠BOD是二面角D-EC-B的平面角,
在△BOD中,OD=$\frac{2\sqrt{5}}{5}$,OB=BD-OD=2$\sqrt{5}$-$\frac{2\sqrt{5}}{5}$=$\frac{8\sqrt{5}}{5}$,
BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=2$\sqrt{2}$,
由余弦定理得cos∠BOD=$\frac{O{D}^{2}+O{B}^{2}-B{D}^{2}}{2OD•DB}$=$\frac{7}{8}$,
故选:D.

点评 本题主要考查二面角的求解,根据折叠前后直线的位置关系以及二面角的平面角的定义作出二面角的平面角是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.将函数y=sin2x的图象向左平移$\frac{π}{6}$个单位,再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标不变)得到y=f(x)图象.
(1)写出y=f(x)的解析式;
(2)求f(x)≤-$\frac{1}{2}$的解集;
(3)当x∈[0,$\frac{π}{2}$]时,求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{25}$=1(a>5)的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,焦距为2$\sqrt{2}$,过点D(1,0)直线l与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)当直线l的斜率为-1时,求|AB|;
(3)若直线l垂直于x轴,点E的坐标为(2,1),直线AE与直线x=3交于点M,求直线BM的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$过点A(2,3),且F(2,0)为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在于行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于$\frac{10\sqrt{13}}{13}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1).
(Ⅰ)试计算$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|的值; 
(Ⅱ)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.z=a+2i(a∈R),若z2+8i为纯虚数,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.曲线C的方程:$\frac{x^2}{5-m}+\frac{y^2}{m-2}=1$
(1)当m为何值时,曲线C表示焦点在x轴上的椭圆?
(2)当m为何值时,曲线C表示双曲线?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则其体积为(  )
A.4B.$4\sqrt{2}$C.$4\sqrt{3}$D.8

查看答案和解析>>

同步练习册答案