| A. | 10 | B. | 20 | C. | 2$\sqrt{41}$ | D. | 4$\sqrt{41}$ |
分析 求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.
解答 解:由题意可得椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{25}$=1的b=5,c=4,
a=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{41}$,
由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,
即有△ABF2的周长为|AB|+|AF2|+|BF2|
=|AF1|+|AF2|+|BF1|+|BF2|=4a=4$\sqrt{41}$.
故选:D..
点评 本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{5}{6}$ | C. | $\frac{6}{7}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com