精英家教网 > 高中数学 > 题目详情
11.已知等比数列{an}的首项a1=-4,公比q=$\frac{3}{4}$.试问:它的第几项是-$\frac{81}{64}$?

分析 由题意和等比数列的通项公式可得n的方程,解方程可得.

解答 解:由题意可得等比数列{an}的通项公式an=a1qn-1=-4×($\frac{3}{4}$)n-1
令an=-4×($\frac{3}{4}$)n-1=-$\frac{81}{64}$可解得n=5
故它的第5项是-$\frac{81}{64}$

点评 本题考查等比数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)是奇函数.
(1)求φ的值;
(2)若函数f(x)的图象关于点($\frac{π}{3}$,0)对称,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-2bx+3,b∈R.
(1)若函数f(x)的图象经过点(4,3),求实数b的值;
(2)当x∈[-1,2]时,函数y=f(x)的最小值为1,求当x∈[-1,2]时,函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将函数y=sin2x的图象向左平移$\frac{π}{6}$个单位,再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标不变)得到y=f(x)图象.
(1)写出y=f(x)的解析式;
(2)求f(x)≤-$\frac{1}{2}$的解集;
(3)当x∈[0,$\frac{π}{2}$]时,求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.极坐标系中,曲线ρ2=$\frac{1}{1+si{n}^{2}θ}$与直线ρsinθ-$\sqrt{3}$ρcosθ+$\frac{\sqrt{3}}{2}$=0交于A、B两点,定点P($\frac{1}{2}$,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知cosα=$\frac{2}{3}$,α∈(0,$\frac{π}{2}$),那么sin$\frac{α}{2}$=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求
(1)函数y=f(x)的解析式;
(2)方程f(x)=0的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{25}$=1(a>5)的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.z=a+2i(a∈R),若z2+8i为纯虚数,则a=2.

查看答案和解析>>

同步练习册答案