精英家教网 > 高中数学 > 题目详情
10.抛物线y2=2px(p>0)的准线恰好是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一条准线,则该抛物线的焦点坐标是($\frac{4}{3}$,0).

分析 由已知可得双曲线的准线方程及其抛物线的准线方程即可得出p.

解答 解:抛物线y2=2px(p>0)的准线为x=-$\frac{p}{2}$.
由双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,得a2=4,b2=5,c=$\sqrt{{a}^{2}{+b}^{2}}$=3.
取此双曲线的一条准线x=-$\frac{{a}^{2}}{c}$=-$\frac{4}{3}$=-$\frac{p}{2}$,
解得:p=$\frac{8}{3}$,
∴焦点坐标是($\frac{4}{3}$,0),
故答案为:($\frac{4}{3}$,0).

点评 熟练掌握双曲线与抛物线的标准方程及其性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设三棱锥O-ABC的各条棱长均为1,点M,N分别为OA,BC的中点,则$\overrightarrow{MN}$•$\overrightarrow{OB}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.极坐标系中,曲线ρ2=$\frac{1}{1+si{n}^{2}θ}$与直线ρsinθ-$\sqrt{3}$ρcosθ+$\frac{\sqrt{3}}{2}$=0交于A、B两点,定点P($\frac{1}{2}$,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求
(1)函数y=f(x)的解析式;
(2)方程f(x)=0的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F向其一条渐近线作垂线l,垂足为A,l与另一条渐近线交于B点,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{25}$=1(a>5)的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图中,输出S的值是$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$过点A(2,3),且F(2,0)为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在于行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于$\frac{10\sqrt{13}}{13}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数$f(x)=\frac{x^2}{2}-klnx$,k>0.若f(x)存在零点,则f(x)在区间(1,$\sqrt{e}$]上有(  )个零点.
A.0B.1C.2D.不确定

查看答案和解析>>

同步练习册答案