【题目】(1)已知命题
:实数
满足
,命题
:实数
满足方程
表示的焦点在
轴上的椭圆,且
是
的充分不必要条件,求实数
的取值范围;
(2)设命题
:关于
的不等式
的解集是
;
:函数
的定义域为
.若
是真命题,
是假命题,求实数
的取值范围.
【答案】(1)
;(2)![]()
【解析】分析:(1)利用一元二次不等式的解法化简
,利用椭圆的标准方程化简
,由包含关系列不等式求解即可;(2)化简命题
可得
,化简命题
可得
,由
为真命题,
为假命题,可得
一真一假,分两种情况讨论,对于
真
假以及
假
真分别列不等式组,分别解不等式组,然后求并集即可求得实数
的取值范围.
详解:(1)由
得:
,即命题![]()
由
表示焦点在
轴上的椭圆,可得
,解得
,即命题
.
因为
是
的充分不必要条件,所以
或![]()
解得:
,∴实数
的取值范围是
.
(2)解:命题
为真命题时,实数
的取值集合为![]()
对于命题
:函数
的定义域为
的充要条件是
①恒成立.
当
时,不等式①为
,显然不成立;
当
时,不等式①恒成立的条件是
,解得![]()
所以命题
为真命题时,
的取值集合为![]()
由“
是真命题,
是假命题”,可知命题
、
一真一假
当
真
假时,
的取值范围是![]()
当
假
真时,![]()
综上,
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出这些数据的频率分布直方图;
![]()
(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( ) ![]()
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥
中,底面
是边长为4的正方形,
是正三角形,平面
平面
,
分别是
的中点.
![]()
(1)求证:平面
平面
;
(2)若
是线段
上一点,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着苹果6手机的上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款购买方式,某分期店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频 数 | 35 | 25 | a | 10 | b |
已知分3期付款的频率为0.15,并且店销售一部苹果6,顾客分1期付款,其利润为1千元;分2期或3期付款,其利润为1.5千元;分4期或5期付款,其利润为2千元,以频率作为概率.
(1)求事件A:“购买的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一该手机的利润,求X的分布列及数学期望E(x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的焦距为
,离心率为
,椭圆的右顶点为
.
![]()
(1)求该椭圆的方程;
(2)过点
作直线
交椭圆于两个不同点
,求证:直线
的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)解不等式
;
(2)若函数
在区间
上存在零点,求实数
的取值范围;
(3)若函数
,其中
为奇函数,
为偶函数,若不等式
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com