精英家教网 > 高中数学 > 题目详情
已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为(  )
A.16B.24或
C.14D.20
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形中,分别是的中点,
 和所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD-A′B′C′D′是平行六面体.
(1)化简++,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN∶NC′=3∶1,设=α+β+γ,试求α,β,γ之值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.

(1)证明:平面PAB⊥平面PCM;
(2)证明:线段PC的中点为球O的球心

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为的正方体中,为线段上的点,且满足
.
(Ⅰ)当时,求证:平面平面
(Ⅱ)试证无论为何值,三棱锥的体积
恒为定值;
(Ⅲ)求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱锥P—ABC的侧棱PA、PB、PC两两垂直,下列结论正确的
有__________________.(写出所有正确结论的编号)

②顶点P在底面上的射影是△ABC的垂心;
③△ABC可能是钝角三角形;
④此三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知线段于点,且在平面的同侧,若,则的长为       

查看答案和解析>>

同步练习册答案