精英家教网 > 高中数学 > 题目详情
9.已知集合A={x||x-2|≤1},B={x|x2-2tx+t2-4≤0,t∈R}
(1)若A∩B=[2,3],求实数t的取值范围;
(2)若A⊆∁RB,求实数t的取值范围.

分析 (1)运用绝对值不等式和二次不等式的解法,化简集合A,B,由交集的定义,即可得到t的范围;
(2)求出∁RB,由A⊆∁RB,可得t的不等式,解不等式即可得到t的范围.

解答 解:(1)集合A={x||x-2|≤1}={x|1≤x≤3}=[1,3],
B={x|x2-2tx+t2-4≤0,t∈R}={x|t-2≤x≤t+2}=[t-2,t+2],
若A∩B=[2,3],则t-2=2,即t=4,B=[2,6],符合要求.
则t=4,即t的取值范围是{4};
(2)∁RB={x|x>t+2或x<t-2},
由A⊆∁RB,可得t-2>3或t+2<1,
解得t>5或t<-1.
可得t的取值范围是(5,+∞)∪(-∞,-1).

点评 本题考查集合的交集和集合的包含关系,考查二次不等式和绝对值不等式的解法,运用定义法是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x2+(2a-1)x+1,若对区间(2,+∞)内的任意两个不等实数x1,x2都有$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{{x}_{1}-{x}_{2}}$>0,则实数a的取值范围是(  )
A.(-∞,-$\frac{1}{2}$]B.[-$\frac{5}{2}$,+∞)C.[-$\frac{1}{2}$,+∞)D.(-∞,$-\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建了一个课外兴趣小组.
( I)求课外兴趣小组中男、女同学的人数;
( II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
( III)在( II)的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的实验数据为39,40,40,42,44,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知MOD函数是一个求余函数,MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2,如图是某个算法的程序框图,若输入m的值为6,则输出i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知幂函数y=$({{m^2}-m-5}){x^{{m^2}-2m-6}}$,其图象过原点,则实数m的值为(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x||x-2|≤1},B={x|x2-2mx+m2-4≤0,m∈R}
(1)若A∩B=[2,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点($\frac{π}{2}$,-2).
(Ⅰ)求φ的值;
(Ⅱ)若f($\frac{α}{2}$)=$\frac{6}{5}$,-$\frac{π}{2}$<α<0,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.执行程序框图,如果输入x=9时,输出y=$\frac{29}{9}$,则整数a值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,f′(x)-f(x)<0恒成立,则不等式ln|x|f(x)>0的解集为(  )
A.{x|-1<x<0或x<-1}B.{x|-1<x<0或x>1}C.{x|x<-1或0<x<1}D.{x|-1<x<0或0<x<1}

查看答案和解析>>

同步练习册答案