| A. | (-∞,-$\frac{1}{2}$] | B. | [-$\frac{5}{2}$,+∞) | C. | [-$\frac{1}{2}$,+∞) | D. | (-∞,$-\frac{5}{2}$] |
分析 利用已知条件判断函数的对称轴与单调性的关系,列出不等式求解即可.
解答 解:函数f(x)=x2+(2a-1)x+1,若对区间(2,+∞)内的任意两个不等实数x1,x2都有$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{{x}_{1}-{x}_{2}}$>0,
即$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{({x}_{1}-1)-({x}_{2}-1)}$>0,x1-1,x2-1∈(1,+∞),
可得:f(x)在区间(1,+∞)上是增函数,
二次函数的对称轴为:x=$-\frac{2a-1}{2}$,
可得:$-\frac{2a-1}{2}≤1$,解得a≥$-\frac{1}{2}$.
故选:C.
点评 本题考查二次函数的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
| x | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 3.00 | 2.48 | 2.08 | 1.86 | 1.48 | 1.10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 150 | C. | 70 | D. | 35 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com