精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极值.

(Ⅰ)求函数的解析式

(Ⅱ)设函数是否存在实数使得曲线轴有两个交点若存在求出的值若不存在请说明理由.

【答案】(1) (2) 存在曲线轴有两个交点

【解析】【试题分析】1)利用两个极值点处导数为零列方程组求解出的值.2化简得出的表达式,利用导数求函数的单调区间,要使函数与轴有两个交点,则需函数的极大值或极小值为零.由此求得的取值范围.

【试题解析】

因为处取得极值

所以的两个根

解得

经检验符合已知条件.

(Ⅱ)由题意知

随着变化情况如下表所示

由上表可知

取足够大的正数时

取足够小的负数时

因此为使曲线轴有两个交点结合的单调性

即存在曲线轴有两个交点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为为短轴的一个端点, 若点在椭圆上,则点称为点的一个“椭点”.

1)求椭圆的标准方程;

(2)若直线与椭圆相交于两点,且两点的“椭点”分别为为直径的圆经过坐标原点试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,左、右顶点分别为,经过点且斜率为的直线与椭圆交于两点.

(1)求椭圆的方程;

(2)记的面积分别为,求关于的表达式,并求出当为何值时有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若函数的单调递减区间为,求函数的图像在点处的切线方程;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为甲投篮3次均未命中的概率为乙每次投篮命中的概率均为乙投篮2次恰好命中1次的概率为乙每次投篮是否命中相互之间没有影响.

(1)若乙投篮3次,求至少命中2次的概率;

(2)若甲、乙各投篮2次,设两人命中的总次数为的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a、b和平面,下列说法中正确的有______

,则

,则

,则

若直线,直线,则

若直线a在平面外,则

直线a平行于平面内的无数条直线,则

若直线,那么直线a就平行于平面内的无数条直线.

查看答案和解析>>

同步练习册答案