精英家教网 > 高中数学 > 题目详情
函数f(x)=(x+3)•|x-1|的单调递增区间是
 
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:先化为分段函数,再画出函数的图象,由图象可知单调增区间.
解答: 解:∵f(x)=(x+3)•|x-1|=
x2+2x-3,x≥1
-x2-2x+3,x<1

∴f(x)=
(x+1)2-4,x≥1
-(x+1)2+4,x<1

函数的图象如图所示,
由图象可知,
函数的单调增区间为(-∞,-1),(1,+∞),
故答案为:(-∞,-1),(1,+∞),
点评:本题主要考查了函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一块木料,已知棱BC∥平面A′C′,要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎么画线?所画的线和面AC有什么关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D是△ABC的边AB的中点,且AB=4,BC+CD=4,则△BCD面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为
6
,求球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

编写一个程序,求1×22+2×32+…+10×112的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.
(1)求实数m的值;
(2)若该直线的斜率k<1,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x),且f(x)=f(x+4),f(1)=2,则f(2)+f(3)+f(4)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆的半径变为原来的
1
3
,而弧长不变,则该弧所对的圆心角是原来的
 
倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax,求函数f(x)的反函数.

查看答案和解析>>

同步练习册答案