【题目】已知函数
,则下列结论正确的有( )
A. 函数
的最大值为2;
B. 函数
的图象关于点
对称;
C. 函数
的图象左移
个单位可得函数
的图象;
D. 函数
的图象与函数
的图象关于
轴对称;
E. 若实数
使得方程
在
上恰好有三个实数解
,
,
,则一定有
.
科目:高中数学 来源: 题型:
【题目】三国时期吴国的数学家赵爽创制了一幅“勾股方圆图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股方圆图”中,四个全等的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+
)-1.
(1)求f(x)的最小正周期和单调递减区间;
(2)将y=f(x)图象上所有的点向右平行移动
个单位长度,得到y=g(x)的图象.若g(x)在(0,m)内是单调函数,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点
坐标是
,曲线
的方程为
;以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,斜率是
的直线
经过点
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)求证直线
和曲线
相交于两点
、
,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x∈[1,2],
﹣lnx﹣a≥0,命题q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内
含20小时
每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.
设在A俱乐部租一块场地开展活动x小时的收费为
元
,在B俱乐部租一块场地开展活动x小时的收费为
元
,试求
与
的解析式;
问该企业选择哪家俱乐部比较合算,为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,函数
的图象在点
处的切线平行于
轴.
(1)求
的值;
(2)求函数
的极小值;
(3)设斜率为
的直线与函数
的图象交于两点
,
,
,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com