精英家教网 > 高中数学 > 题目详情

【题目】某程序框图如图所示,则该程序运行后输出的值是(
A.2014
B.2015
C.2016
D.2017

【答案】D
【解析】解:当i=2015时,满足进行循环的条件,执行循环体后,i=2014,S=2017; 当i=2014时,满足进行循环的条件,执行循环体后,i=2013,S=2016;
当i=2013时,满足进行循环的条件,执行循环体后,i=2012,S=2017;
当i=2012时,满足进行循环的条件,执行循环体后,i=2011,S=2016;

当i=2n+1时,满足进行循环的条件,执行循环体后,i=2n,S=2017;
当i=2n时,满足进行循环的条件,执行循环体后,i=2n﹣1,S=2016;

当i=1时,满足进行循环的条件,执行循环体后,i=0,S=2017;
当i=0时,不满足进行循环的条件,
故输出的S值为2017,
故选:D
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的固定成本(固定投入)2500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200xx3(),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2α+ )=(
A.
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校600名文科学生参加了425日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599

12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76

55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);

(2)抽出的100名学生的数学、外语成绩如下表:

外语

及格

数学

8

m

9

9

n

11

及格

8

9

11

若数学成绩优秀率为35%,求m,n的值;

(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的有( )

A. 函数的最大值为2;

B. 函数的图象关于点对称;

C. 函数的图象左移个单位可得函数的图象;

D. 函数的图象与函数的图象关于轴对称;

E. 若实数使得方程上恰好有三个实数解,则一定有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数,且方程有等

根.

(1)求的解析式及值域;

(2)设集合,,若,求实数的取值范围;

(3)是否存在实数,使的定义域和值域分别为?若存在,求

的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案